
XBRL US Database Changes - June 2017

Overview
The XBRL US database contains public company reports filed with the Securities and Exchange
Commission (SEC) filed in XBRL. The database is being expanded to support XBRL reports from other
sources. Several changes are being made to to the database to support multiple sources. In addition,
improvements are being made to the database. Although there are significant changes to the database
model, backward compatibility has been maintained. This document describes these changes.

Table of Contents
Overview 1

Table of Contents 1

Genericized for multiple sources 3
Source table 3
Entity and source 3
Namespace and source 4
Report table (replaces accession) 4

SEC properties 6
Report element table 7
Report document table 7

DTS (Discoverable Taxonomy Set) 8
DTS table 8
DTS document table 9
DTS element table 9
DTS and networks 10
DTS and taxonomy identification 11

Documents 11
Document structure 12

Units 12
Unit base table 12
Unit measure base table 13
Unit report table 13

Tuples 14

Fiscal based ultimus index 14

Resource table changes 14

Standard role definitions 14

Backward compatibility 15
accession_document_association 15
accession_element 15
Ordering of columns 16

Function Changes 16
dts_tree (new function) 16
document_tree (new function) 17
document_navigate (new function) 17
ticker (updated) 17

Appendix - List of affected tables and views 18

Genericized for multiple sources
The previous version of the database was designed to only expect filings from a the SEC and
contained no provision in the model to support filings from other reporting sources. This affects
the model of the database and how the data is handled during the exchange, transform and
load (ETL) process for loading data.

Source table
To identify a reporting source, the “source” table is added to the database:

source ​table
Column Type Nulls Notes

source_id integer No Internal id for the source.

source_name text Yes Name of the source

For SEC data, an initial row is added with source_id = 1 and source_name = ‘SEC’.

A source_id column is added to the following tables:

● base_namespace
● entity_source (new table)
● namespace_source (new table)
● report (new table)

When a new reporting source is added to the database, a row will be added to the source table.

Entity and source
Entities are shared across sources where the entity scheme and identifiers are the same. The
entity_source table links entities (in the entity table) to the reporting source (in the source table).

entity_source ​table
Column Type Nulls Notes

entity_source_id integer No Internal id for the entity_source.

entity_id integer No Foreign key to the entity table.

source_id integer No Foreign Key to the source table.

Namespace and source
The identification of namespaces that are used are in the namespace table. This table includes
the is_base column because, with multiple sources, it is possible that a namespace is a base
namespace for one source but not another. The namespace_source table is added to identify
which namespaces for a source and whether the namespace is a base namespace.

namespace_source ​table
Column Type Nulls Notes

namespace_source_i
d

integer No Internal id for the namespace_source.

namespace_id integer No Foreign key to the namespace table.

source_id integer No Foreign key to the source table.

is_base boolean No Determines if the namespace is a base
namespace for the source.

The is_base is left on the namespace table for backward compatibility. It is only populated when
loading SEC reports.

Report table (replaces accession)
Many columns on the accession table were specific to SEC filings such as
filing_accession_number, irs_number and sec_html_url. To support filings from other sources a
new table “report” is created. This table replaces the accession table and contains fields that
apply to all sources. Source specific columns are included in a flexible JSON structure in the
“properties” column.

For backward compatibility, a view for “accession” is created which has the same columns as
the former table. This view will only include filings for SEC source reports.

report ​table
Column Type Nulls Notes

report_id integer No Internal id for the report. For all existing
accession rows, this has the same value
as the accession_id.

source_id integer No source_id for the source for the source of
the report.

entity_id integer No entity_id of the report.

source_report_identifier text Yes The identifier that uniquely identifies the
report for the source reporting system. For
SEC, this is the filing accession number.

dts_id integer No dts_id of the taxonomy dts for the report.
See ​DTS and Taxonomy​.

entry_dts_id integer Yes dts_id of the non taxonomy portion of the
report. This is used for footnotes. See ​DTS
and Taxonomy​.

creation_timestamp timestamp No Timestamp when the row is added to the
table.

accepted_timestamp timestamp No Timestamp when the report is filed as
determined by the source reporting
system.

is_most_current boolean No Identifies the most current report for an
entity.

entity_name text Yes The name of the reporting entity.

creation_software text Yes The name of the software used to create
the report.

entry_type text No Identifies if the report is an inline XBRL or
standard XBRL instance. The values are
‘inline’ and ‘instance’.

entry_url text No The url of the report.

entry_document_id integer NO The document_id of the entry document.

alternative_document_id integer Yes The document_id of an alternative
representation of the the report. This is
usually used to include the document id of
a non-XBRL (html or text) version of a
report.

reporting_period_end_date timestamp Yes The date of the reporting period end.

restatement_index integer Yes Identifies if the filing is a restatement. The
most recent statement of a filing will be
“1”. The next most recent statement of a
filing will be “2”, and so on.

period_index integer Yes Identifies the most recent filing for the
entity. This is similar to the restatement

index, whereas each filing is processed,
the period indexes of the previous filings
are bumped up by 1.

properties JSONB Yes A flat JSON structure that contains any
additional properties of the report. For
SEC filings see ​SEC properties​.

Note about accession_id on other tables.​ The report_id is a replacement for accession_id. In
order to maintain backward compatibility, any existing table with an accession_id was not
changed to report_id. When joining the “report” table to a pre-existing table, the join will be
made on report.report_id = ​other_table​.accession_id.

SEC properties
For SEC filings, the “properties” column contains the following JSON structure:

{
"​zip_url​": "",
"​filing_date​": "",
"​sec_html_url​": "",
"​document_type​": "",
"​business_phone​": "",
"​business_address​": "",
"​percent_extended​": null,
"​state_of_incorporation​": "",
"​filing_accession_number​": "",
"​internal_revenue_service_number​":””,
"​standard_industrial_classification​":””

}
These are the columns from the accession table that are not on the report table. To access
these properties, use the “->>” operator.

SELECT ​properties->>'document_type'
FROM report
LIMIT 10

The “->>” operator returns the value as a string. For non string properties you may cast the
returned value.

SELECT (properties->>'standard_industrial_classification')​::integer
FROM report
LIMIT 10

Report element table
The report_element table partially replaces the accession_element table. The report_element
table lists the elements that are used in a report. An element is considered used if it is used on a
fact as a primary item, dimension or member.

report_element ​table
Column Type Nulls Notes

report_element_id integer No Internal id for the report_element.

report_id integer No Foreign key to the report table.

element_id integer No Foreign key to the element table.

is_base booleans No Identifies if the element is a base or extension
element for the report.

primary_count integer Yes The number of times the element is used on a.
fact as a primary item in the report

dimension_count integer Yes The number of times the element is used on a
fact as a dimension in the report.

member_count integer Yes The number of times the element is used on a
fact as a dimension member in the report.

Unlike the accession_element table, elements that are not directly used on a fact (i.e. abstracts
used as headings) are not in the report_element table. These elements are identified on the the
dts_element table​. See the ​accession_element backward compatibility​ section for more
information about how the report_element table replaces the accession_element table.

Report document table
The report_document table partially replaces the accession_document_association table. The
report_document table identifies the non DTS documents that make up the report. This will
always include the instance or inline document for the report. the report_document table may
include additional non XBRL documents (such as a text or html version of the report).

report_document ​table
Column Type Nulls Notes

report_document_id integer No Internal id for the report_document.

report_id integer No Foreign key to the report table.

document_id integer No Foreign key to the document table.

The documents that make up the DTS are in the ​dts_document table​. See the
accession_document_association backward compatibility​ section for more information.

DTS (Discoverable Taxonomy Set)
The database now supports identification of a DTS (discoverable taxonomy set). A DTS is the
combination of the documents that support an instance. Prior to this change, there was no easy
way to determine if two reports used the same DTS. For SEC reporting, this isn’t very important
because filers create an extension taxonomy for each report so no two filings ever refer to the
same DTS.

In the previous version of the database, networks of relationships were associated with the
accession. If multiple accessions used the same DTS, then there would be a separate set of
networks and relationships for each report in the database (in the network table and the
relationship table). This version of the database associates the networks to the DTS. In this
model if two reports use the same DTS there would only be one copy of the networks and
relationships and each report would refer to the same DTS.

DTS table
The dts table identifies each DTS in the database.

dts ​table
Column Type Nulls Notes

dts_id integer No Internal id for the dts.

dts_hash byeta No Unique hash for the dts.

dts_name text Yes Name of the DTS.

The dts_hash is a sha-224 digest of the sorted urls of the top level documents that make up the
DTS. It is unique for each DTS. When a report is loaded, the hash is calculated for the report
and checked against the dts table to determine if the DTS exists in the database.

A DTS can be loaded in two ways. It can be loaded as part of loading a report or can be directly
loaded to the database. If the DTS is directly loaded, a name can be applied to the dts
(contained in the dts_name column). This is done for commonly used DTSs such as the US
GAAP taxonomy.

The report table includes a dts_id column to identify the DTS of the report. Footnotes present a
issue in the model for the DTS. Footnote networks are contained in the instance/inline

document and are therefore not technically part of a DTS. However, the DTS model associates
the networks and relationships to the DTS. To handle this, when a report contains footnotes a
second DTS is created in the database for the report. This DTS is identified in the entry_dts_id
column for the report. The hash for the footnote DTS is the url of the instance/inline document. If
two reports use the same DTS and each has footnotes, the dts_id for each report will be the
same, however each report will have a separate entry_dts_id for the DTS row that contains the
footnote networks.

DTS document table
The dts_document table identifies the files that make up a DTS.

dts_document ​table
Column Type Nulls Notes

dts_document_id integer No Internal id for the dts_document.

dts_id integer No Foreign key to the dts table.

top_level boolean No Identifies if the document is at the top of the
DTS document tree.

document_id integer No Foreign key to the document table.

The top_level column identifies if the document is part of the initial entry point of the DTS. The
top level documents are the document that are directly referenced from the instance/inline
document. Only the uris of top level documents are used to create the dts_hash (on the dts
table) for the DTS.

The dts_document table partially replaces the accession_document_association table.
Documents that are part of a report but not the DTS are in the ​report_element table.​ See the
accession_document_association backward compatibility​ section for more information.

DTS element table
The dts_element table identifies the elements that are “used” by the DTS. An element is
considered “used” by a DTS if it is included in at least one extended link in the DTS.

dts_element ​table
Column Type Nulls Notes

dts_element_id integer No Internal id for the dts_element.

dts_id integer No Foreign key to the dts table.

element_id integer No Foreign key to the element table.

is_base boolean No Identifies if the element is a base or extension
element for the DTS.

in_relationship boolean No Identifies if the element is in a relationship in the
DTS. Currently only elements that are included
in at least one extended link in the DTS are
included in the dts_element table. Therefore,
this value is always true.

The dts_element table partially replaces the accession_element table. See the
accession_element backward compatibility​ section for more information.

DTS and networks
Networks of relationship are now linked to the DTS instead of the accession. The dts_network
and dts_relationship tables replace the former network and relationship tables, respectively. The
dts_network table contains the same columns as the former network table except the
accession_id is replaced with dts_id. The dts_relationship table has the same columns as the
former relationship table except the network_id is replaced with the dts_network_id.

Joins between the dts_network table and the report table are done on the dts_id columns of the
tables. This replaces using the accession_id column on the former accession table and network
table.

In the previous version of the database, a query to get the list of networks for an accession:

SELECT n.*
FROM accession a
JOIN network n
 ON a.​accession_id​ = n.​accession_id
WHERE a.filing_accession_number = '0001144204-17-034457'

In the new version:

SELECT dn.*
FROM report r
JOIN dts_network dn
 ON r.​dts_id​ = dn.​dts_id
 OR r.​entry_dts_id​ = dn.​dts_id --to include the footnote networks
WHERE r.source_report_identifier = '0001144204-17-034457'

In the new version of the query, the join between report and dts_network is on the dts_id.

DTS and taxonomy identification
The existing taxonomy and taxonomy_version tables are used to identify the taxonomy
“families”. These can be linked to the DTS via the taxonomy_version_dts table.

The terminology for DTS and taxonomy are often used interchangeable and can create some
confusion. Here are some definitions that apply to the usage of these terms In the database.

DTS The collection of taxonomy schema and linkbase files that support an
instance/inline document. A small exception, is that there is a DTS that is the
instance/inline document when there are footnotes. This is to support the
network and resources for the footnotes in the database.

Taxonomy In the database, this is a notion of taxonomy “family”. For example, the US
GAAP taxonomy is really a collection of taxonomies (US GAAP, dei, currency,
country, …). This constitutes a family of taxonomies that are often used
together.

The taxonomy_version_dts table, links the version of a taxonomy family to the DTSs that are
part of that family.

taxonomy_version_dts ​table
Column Type Nulls Notes

taxonomy_version_dt
s_id

integer No Internal id for the taxonomy_version_dts.

taxonomy_version_di integer No Foreign key to the taxonomy_version table.

dts_id integer No Foreign key to the dts table.

Documents
The document_type and target_namespace columns have been added to the document table.
The document types are:

● schema
● linkbase
● instance
● inline
● report - text or html version of the report

If a document type cannot be determined, the document_type column will be null.

For schema documents, the target_namespace column contains the target namespace of the
schema.

Document structure
The database now tracks the relationships between documents. A document can reference
other documents via imports, includes, schemaRefs, roleRefs, arcroleRefs and locators. The
document structure is the network by following these links.

NOTE: ​For filings loaded previous to this version of the database, the document structure is not
loaded.

document_structure table
Column Type Nulls Notes

document_structure_id integer No Internal id for the document_structure..

parent_document_id integer No Foreign key for the parent document to the
document table.

child_document_id integer No Foreign key for the child document to the
document table.

For extracting the document structure see the ​dts_tree​ function.

Units
The former unit table contained units as they were defined in an instance or inline document.
This meant that common units (i.e. USD) were added to the table for each accession. This
created unnecessary duplication in the table and made it more difficult to determine if the same
unit is used across multiple accessions, as facts from different accessions would have different
unit_id values for the same unit.

To improve the handling of units, the unit and unit_measure tables were replaced by the
unit_base, unit_measure_base and unit_report tables.

Unit base table
The unit_base table contains a single row for each unit of measure defined in any instance or
inline document.

unit_base table
Column Type Nulls Notes

unit_base_id integer No Internal id for the unit_base.

unit_hash bytea No A hash of the unit based on a canonical form of
the unit (the hash_string).

unit_hash_string characte
r varying

No The string before hashing.

unit_string characte
r varying

Yes A presentational form of the unit.

The unit table has a unique index on the unit_hash column.

Unit measure base table
The unit_measure_base table identifies the numerator and denominator parts of the unit. It
serves the same function as the former unit_measure table.

unit_measure_base table
Column Type Nulls Notes

unit_measure_base_id integer No Internal id for the unit_measure_base.

unit_base_id integer No Foreign key to the unit table.

qname_id integer No Foreign key to the qname table.

location_id integer Yes Identifies the use of the unit part.
1 - measure - for units that don’t have a
numerator and denominator.
2 - numerator
3 - denominator

Unit report table
The unit_report_table identifies which units are used in a report. The combination of the
unit_base and unit_report tables replace the former unit table.

unit_report table
Column Type Nulls Notes

unit_report_id integer No Internal id for the unit_report.

report_id integer No Foreign key to the report table.

unit_base_id integer No Foreign key to the unit_base table.

unit_xml_id characte
r varying

No The ID used on the xml unit element in the
instance.

Tuples
Tuple support has been added to the database. A tuple fact is stored on the fact table like any
other fact. The tuple_fact_id column is used to identify the tuple parent of a fact. The null
constraint for context_id on the fact table is dropped as tuple facts do not have a context.

The null constraint for period_type_id on the element table is dropped. This allows tuple facts,
which do not have a period, to be stored on the fact table. The column is_tuple is added to the
element table. This is a boolean column indicating if the element is a tuple element.

Fiscal based ultimus index
A fiscal based ultimus (and hash) has been added to the database via the columns
fiscal_ultimus_index and fiscal_hash columns on the fact table. The ultimus indexes are used to
rank repeatedly reported facts. The hashes are used to identify “equivalent” facts. There are 3
hashes: fact_hash, calendar_hash and now, the fiscal_hash. The hashes are the same except
for how the period of a fact is included in the hash. The fact_hash uses the actual reported
period of the fact. The calendar_hash uses the period as it fits into the calculated calendar
period. The new fiscal_hash uses the the period as it fits into the calculated fiscal period.

Not all reported periods can be calculated into a calendar period and/or a fiscal period. These
facts will not have a calendar and/or fiscal hash and will not be part of the calendar and/or fiscal
ultimus rankings.

Resource table changes
The null constraint for the role_id of the resource table has been dropped. This is to support
label, footnote or reference resources that do not have an explicit role.

Standard role definitions
The standard_role_definition table is added. This is a static table of role uris defined in the
XBRL core spec with a label (short name) and definition. This is useful when label or reference
resources to provide a human readable label are needed.

standard_role_definition table
Column Type Nulls Notes

standard_role_definition_i
d

integer No Internal id for the standard_role_definition.

uri text No The role uri.

label text Yes A short human readable name for the label.

definition text Yes The definition provided in the XBRL core
specification.

Backward compatibility
Some tables in the former version of the database have been replaced by a new table or a
combination of new tables. The replaced tables have been dropped from the database. For
each dropped table, a view is created with the same name to allow backward compatibility. The
following is a list of tables that have been replaced by views:

● accession
● accession_document_association
● accession_element
● accession_timestamp
● network
● relationship
● unit
● unit_measure

The use of these views should produce the same results as the former tables. However, it is
possible that using the views may affect query performance. Rewriting the queries to use the
new tables may improve performance.

accession_document_association
The accession_document_association table is replaced by a combination of the
report_document and dts_document tables. The report_document table can be joined directly to
the report table via the report_id columns on both tables. This will yield the non-DTS documents
associated with the report, which includes the instance/inline document and possibly alternative
versions of the report (i.e. a text or html version of the report).

The DTS documents for the report are identified by joining the report and dts_document tables
using the dts_id columns on both tables. This will yield the DTS documents associated with the
report.

The accession_document_association view is a union of querying the report_document and
dts_document tables.

accession_element
The accession_element table is replaced by a combination of the report_element and the
dts_element tables. The report_element table identifies the elements that are used on facts in
the report with the associated counts (primary, dimension and member). The dts_element table
identifies elements used by a DTS (used in a network in the DTS).

For a report, an element will usually appear on both the report_element table and the
dts_element table (based on the dts_id of the report). The accession_element view unions the
queries for the report_element and dts_element table and eliminates the duplicates.

Ordering of columns
Some existing queries may be affected by columns that were added to existing table. Queries
that use ​SELECT *​ are particularly susceptible when the results are being handled by an
application (i.e. Excel) or a program. The number and order of returned columns may be
different from what is expected based on the previous version of the database.

Function Changes

dts_tree (new function)
The dts_tree returns a set of rows (table) showing the document hierarchy for a dts. It takes a
dts id as a single parameter. The columns of the returned table are:

Column Type Notes

tree_order integer Order of the recursive traversal of the document
structure. For sibling documents, the order is not
guaranteed.

level integer The depth of the document in the document
structure.

document_id integer Foreign key to the document table.

starts_loop boolean If true, this document is the beginning of a loop
in the document structure. The children for this
document are included in the result the first time
the document is encountered in the document
structure. Once the document is encountered
further down in the structure the loop is detected
and the children are not repeated.

Generally, this function is used in the FROM clause of a query. For example, to get the
document structure for the DTS of the latest report loaded in the database:

SELECT dt.*
 ,repeat(' ', dt.level) || d.document_uri --indent the uris according to the

structure
FROM ​dts_tree​((

SELECT dts_id
FROM report

WHERE report_id = (SELECT max(report_id) FROM report)
)) dt

JOIN document d
 ON dt.document_id = d.document_id

document_tree (new function)
The document_tree function works exactly like the dts_tree function except that it takes a
document id as the starting point (instead of a DTS id).

document_navigate (new function)
The document_navigate function is the underlying function that is used by the dts_tree and
document_tree functions.

ticker (updated)
The ticker function has been modified to better handle inline documents.

Appendix - List of affected tables and views

Name Notes

accession Dropped table. Replaced by view.

accession_document_as
sociation

Dropped table. Replaced by view.

accession_element Dropped table. Replaced by view.

accession_timesteamp Dropped table. Replaced by view.

base_namespace Added column source_id

document Added columns document_type and target_namespace

document_structure New Table

dts New Table

dts_document New Table

dts_element New Table

dts_network New Table

dts_relationship New Table

element Added column is_tuple. Dropped not null constraint on
the period_type_id column.

element_attribute Dropped table. This table was never used.

entity_source New table

fact Added columns fiscal_hash, fiscal_ulitmus_index,
unit_base_id. Dropped null constraint on column
context_id.

namespace_source New table

network Dropped table. Replaced by view.

reference_part_type Dropped table. This table was never used.

reference_resource Dropped table. This table was never used.

relationship Dropped table. Replaced by view.

report New table

report_document New Table

report_element New Table

resource Dropped “not null” constraint on the resource_role_id
column.

source New table

standard_role_definition New Table

taxonomy_version_dts New Table

unit Dropped table. Replaced by view.

unit_base New Table

unit_measure Dropped table. Replaced by view.

unit_measure_base New Table

unit_report New Table

