

XULE Language Syntax for
XBRL - V1.2.1

Version 1.2.1

1 | XULE Language Syntax | October 2023

Overview 5
XULE Syntax 5

Fact Set Filtering 5

Taxonomy Navigation 5

Importance of Types 6

Concepts, QNames and Local Names 6

Data Model 7
XULE Processing Model 7

Iterations 7

Evaluating Facts 7
Fact Sets 7

Fact Set without Dimensions 8

Fact Set Filters 8

Concept Filter 9

Period Filter 11

Unit Filter 13

Entity Filter 13

Dimension Filter 14

Instance Filter 16

Aspect Filter Operators 17

Non-Equivalence (Complement) Operator 17

In Operator 17

Combining Aspect Filters 17

Where Filters 18

Fact Property Notation 19

Aspect Alias 20

Unknown Aspects 21

Implicit Matching 21

Covering 22

Nested Alignment (Alignment Windows) 23

Nil Values 26

Nil Values in an Expression 26

None Values and Iteration 27

Handling of None 27

Skipping an Iteration 28

Fact Set Grammar Syntax 28

Defining Fact Sets as Variables 30
Cube as a Filter 30
Navigation 32

2 | XULE Language Syntax | October 2023

Arcrole 32

Direction 33

Role 34

Starting and Ending Navigation 34

Stopping Navigation 35

Taxonomy 36

Filtering Results 36

Return Options 36

Returning a dictionary 39

Returning a list - duplicate results 40

Returning networks 40

Returning paths 41

Dimensional Navigation 42

Pseudo arc roles 44

DRS role 44

Dimension return components 45

Alternative to dimensional navigation 46

Navigation Expression 46

Filtering Collections 47
Conditional and Iterative Statements 48

Iterative Statements (Loops) 48

Conditional Statements (If-else statements) 49

Setting Variables 49
Order of Evaluation 50

Collections (Sets, Lists and Dictionaries) 51
Sets 51

Set and List Operators and Properties 51

Dictionaries 53

Dictionary Operators and Properties 53

Instance Objects (V1.2) 54
Instance Object 54

Instance Properties 55

Fact Object 55

Fact Properties 56

Period Object 59

Period Properties 59

Unit Object 59

Unit Properties 59

Footnote Object 60

Footnote Properties 60

Taxonomy Objects 60

3 | XULE Language Syntax | October 2023

Concept Object 60

Concept Equality 60

Concept Properties 61

Reference Object 63

Reference Properties 63

Parts Object 64

Label Object 65

Label Object Properties 65

Data Type Object 66

Type Object Properties 66

Cube Object 66

Cube Properties 66

Dimension Object 67

Members Object (Not Yet Implemented) 68

Taxonomy (DTS) Object 68

Taxonomy Properties 68

Network Set Object 72

Network Object 72

Network Properties 72

Role Object 73

Role Properties 73

Relationship Object 74

Relationship Properties 74

Properties and Functions 75
Numerical Properties and Functions 75

String Functions and Properties 77

Generic Properties 80

Date Properties and Functions 81

Aggregation Functions 82

Statistical Functions 84

Existence Functions 85

Unit Functions 86

DTS Functions 86

Range Function 87

Data Import and Transformation Functions 88

Information Functions 90

Custom Functions 91

Recognising Qnames 92
Defining Namespaces 92
Namespace Group (V1.2) 93
Assertion Types 93

4 | XULE Language Syntax | October 2023

Satisfied Types 94

Rule Output 95

Output Attributes 95

Passing Variables to Rule Output 96

Tagging Values for use in Output 96

Fact Properties and Rule Focus 96

Rule Value 97

Labels in Messages 97

Special Characters in Messages 98

Rule Name Prefix 98

Rule Suffix 99

Predefined Output Attributes 100

Iterations and Alignments 100
Multiple Fact Sets 101

Lists, Sets and Iterations 102

FACT Iterations versus FOR iterations 102

SKIP in a list or Set 102

Impact of Syntax on Performance 103
Operators 104
Versions 107
Upcoming Versions 108
Examples 111
XULE Properties 123
XULE Functions that are not Properties 129
Error Codes 130

Run Time Errors 130

Compile Errors 130

Taxonomy Object Model 132
Instance Object Model 133
EBNF Grammar (TO BE UPDATED) 134
Command Line Instructions for XULE Plugin 136
Glossary 140

Overview

The XULE syntax is a domain specific language used to define queries and assertions over an

XBRL instance or taxonomy. The XULE language described in this document can be used with

an Arelle Plugin for processing DQC rules, as well as Altova’s XMLSpy and RaptorXML+XBRL

Server. The DQC plugin processes these rules. Rules can be defined to use XBRL instance

documents and/or XBRL Taxonomies (including extension taxonomies) as inputs to the rule.

5 | XULE Language Syntax | October 2023

XULE Syntax

The XULE syntax has two distinct components. The first is fact set filtering and the second is

taxonomy navigation.

Fact Set Filtering

The first component is fact set filtering. A fact set is a XULE term that defines the facts in an

instance document and their associated decimals, units and contexts. Every fact has aspects

associated with it that define what the fact is, how it is disaggregated, the period of time at which

the fact was measured,and the duration over which it occurred. Fact set filtering is the action of

extracting data from an XBRL instance based on these features of the fact. XULE allows a user

to put these values into a set, list or dictionary and manipulate the filtered data. Because all of the

data is in sets, basic set manipulation can be performed on the data such as a union or

intersection or complement. A rule can filter a fact set not only using the dimensions of a fact, but

also the properties of the core or taxonomy defined dimensions. For example, this allows a user

to return all monetary concepts in an instance, or all fact values with a debit balance. XULE also

permits the evaluation of expressions between fact sets. For example a set of Liabilities can be

deducted from a set of Assets. Obviously, a user of the data would align it before doing such an

operation so that Liabilities for 2016 are deducted from Assets for 2016. XULE handles this

alignment to ensure that the evaluation of expressions forces the fact sets to be aligned. XULE

also allows any aspect of a fact to be taken out of alignment or to be aligned. This is covered in

detail in this document.

Taxonomy Navigation

XULE provides a syntax that allows the navigation of XBRL networks across many taxonomies.

This means XULE can compare relationships between taxonomies by combining taxonomy

navigation with set manipulation features. For example, a rule can compare the structure of the

company extension taxonomy against the US GAAP taxonomy. The resulting taxonomy

relationship sets can then be combined with a fact set to determine where values have been used.

These navigation features are explained in detail in the Navigation section of this document.

Importance of Types

XULE uses a number of different types and objects. It is important to understand the differences

between them to use the language effectively. Any value defined is of a particular type. When

defining variables you do not have to define what the types are, the variable will just use the type

of the value assigned to it.

Concepts, QNames and Local Names

The relationship between concepts, qnames and local name is an important one. When returning

data from an instance or a taxonomy, the rule will refer to a concept such as Assets. This concept

however can be represented in three different ways.

1. The concept Assets

6 | XULE Language Syntax | October 2023

2. The qname Assets

3. The local name Assets

The concept Assets is an object with many properties. The concept Assets has a label, a

definition, a reference, a namespace, a balance type, a period type, etc. The concept Assets is

always associated with a taxonomy. All of these properties are available if you have a variable

which represents the concept Assets.

The qname Assets is a short form of us-gaap:Assets. The Asset concept has the default

namespace (in this case us-gaap) applied to it. If you get the qname of Assets you can access

the namespace and local-name but not its label, balance, period type etc. To obtain the details of

a concept you have to look up the concept Assets.

This can be done by passing the qname to the function concept(). For example, to obtain the

concepts assets used by the instance being processed use the function:

taxonomy().concept(Assets)

This will give you the concept object for the current instance. To get the concept Assets for the

us-gaap taxonomy you need to define the following:

 taxonomy($url_to_US-GAAP).concept(Assets)

Here the taxonomy function defines the taxonomy to use. If no value is provided then it is the

current instance.

The local name assets is just a string with the value “Assets”. This would typically be used in a

message. It can be accessed from the concept as follows: $Assets.name.local-name where

$Assets is the concept Assets.

Values returned from an instance document maintain their types. A fact value which has a

datatype of date, for example, will have a date type when processed by Xule. Fact values are not

treated as strings so functions do not have to be applied to elements that have a date type.

Data Model

XULE follows the XBRL data model - defining objects, methods and properties that can be used

to understand an XBRL filing or Taxonomy. The model operates at a semantic level - no

operations are dependent on any underlying xml, json or csv syntax, although the model does

allow access to the syntactic components using functions. This document defines all of the object

classes and properties of those classes. An understanding of the XBRL data model is helpful

when writing rules in XULE.

7 | XULE Language Syntax | October 2023

XULE Processing Model

Iterations

Fact sets and “for loops” create iterations. These can be thought of as methods to make the rule

run multiple times. The XULE processing model can run multiple times for a given rule, in some

cases returning a result as a message or returning no message. The rule starts with a single

iteration. When a fact set is encountered, iterations are added for each value of the fact set.

Iterations are also created when a for loop is encountered. An iteration is created for each loop of

the for expression. For example, the value of assets is tested to determine if it is less than zero.

If assets are reported for 3 periods, the rule will test that assets are less than zero for all three

periods or 3 iterations. If assets are reported in multiple currencies, each of these currency

disclosures will be tested by the same rule. To do this, the processor looks at the number of times

a value appears in the instance and executes the rule for each occurrence of the fact. If the fact

does not exist in the instance, then a single iteration will check for its existence and once

determined it does not exist the rule will complete without producing a message.

Evaluating Facts

Fact Sets

A fact set in XULE is used to represent a group of XBRL fact values. The information in a fact set

not only includes the values of a fact but all the “dimensions” (defining characteristics such as

units, time period, etc.) of that fact. This allows the properties of a specific fact in a fact set to be

queried. The fact set is a representation of the information in an XBRL instance. The fact set

contains no information about the Discoverable Taxonomy Set (DTS) associated with the

instance. For example, you cannot determine which calculations a fact participates in from the

fact set and any of the fact set operatives. These have to be accessed from the DTS.

The curly bracket notation is used to explicitly state in the XULE language that something is a fact

set. The @ is used to indicate a feature of a fact, and all facts that have this feature will be

returned. The @ can stand by itself as shown in the following examples. Curly brackets are

optional.

{@} or {} or @

This will return all fact values in an instance

Fact Set without Dimensions

Dimensions are used in XBRL to disaggregate values, for example, the concept "Revenue" can

be disaggregated by geography using Western Region and Southern Region. If a subset of facts

with no dimensions is required, a square bracket notation can be used to return this subset. The

8 | XULE Language Syntax | October 2023

square bracket and curly bracket notation are used independently - each is a container

representing a fact set.

[@] or []

This will return all non dimensional fact values in an instance.

Curly brackets are used to return all facts. [] Square brackets are used to return only
facts with no dimensions.

Fact Set Filters

The fact set body consists of filters that allow filtering of facts in an instance that returns a subset

of facts. Without filters, all XBRL facts available in the instance would be returned by the Xule

processor. The filters work by explicitly stating the aspects that are required. The following are

dimension filters that can be used:

● concept

● period

● unit

● dimensions (actual dimension name, for example LegalEntityAxis)

● entity

● cube

● instance

In addition, the value of a fact can be filtered using a where filter, which allows more refined

filtering of the fact set that has already been filtered by dimensions, specifically where a fact value

is constrained, such as “where the value is less than zero”. The where filter is used here as there

is no dimension for the facts numerical value. The where filter is described in greater detail below.

To indicate that a dimension filter is being used in a fact set, XULE needs to know that it is an

aspect. The @ sign is used to indicate dimensions in a fact set. For example:

{@concept = Assets}

This will return all the values of Assets in a given instance.

Concept Filter

As discussed previously, the facts can be restricted by filtering the concept by name as follows:

{@concept = Assets}

This can also be defined in the short form:

{@Assets}

9 | XULE Language Syntax | October 2023

The concept filter is a default and is the only filter where the dimension name does not
have to be provided. This is a three-fold convenience, as 1) concept is the most widely used

filter, 2) concept names can be very long, and 3) this structure improves readability.

The concept dimension can be combined with the following properties to filter the data returned:

Filter Name Xule Syntax Filter by

Name Default or name QName of fact element. May have multiple QName choices or

an expression. Concepts can also be filtered by a concept

object.

{@concept = Assets}

Local Name local-name Local name of fact element.

{@concept.local-name = ‘Assets’}

Period type period-type Concept schema declared period type, for example, instant or

duration.

{@concept.period-type = instant}

{@concept.period-type = duration}

Balance balance Concept schema declared balance, for example, credit, debit,

* , none. (* will return all concepts with either a balance of

credit or debit)

{@concept.balance = debit}

{@concept.balance = credit}

{@concept.balance = none}

{@concept.balance = *}

Custom
attribute

attribute(name) Concept schema element declaration custom attribute value,

for example,

Value, * , none (* will return all concepts with any attribute

value associated with the concept)

{@concept.attribute(someattr) = *}

Data Type data-type Concept schema declared data type.

{@concept.data-type = xbrli:monetaryItemType}

base-type Base XBRL type that the data type is derived from.

{@concept.base-type = xbrli:stringItemType}

data-type-ancestry Returns a list of types in order of the type ancestry.

10 | XULE Language Syntax | October 2023

enumerations Returns a set of enumerated values

has-enumerations Values can be true or false

{@concept.has-enumerations = true}

is-monetary Values can be true or false (Defaults to true)

{@concept.is-monetary = true}

Can express as:

{@concept.is-monetary}

is-numeric Values can be true or false (Defaults to true)

{@concept.is-numeric = true}

Can express as:

{@concept.is-numeric}

Substitution
group

substitution Concept schema declared substitution group.

{@concept.substitution = xbrli:item}

 substitution-

ancestry

Returns a list of qnames of substitution groups in order of the

ancestry.

Namespace namespace-uri URI of concept namespace.

{@concept.namespace-uri =

'http://xbrl.sec.gov/dei/2014-01-31'}

 {@concept.period-type = instant @concept.balance = debit}

This will return all values in an instance for all concepts that have a period type equal to instant and have

a debit balance. Because the statement is enclosed in curly brackets, it will return all values, including

dimensionally qualified values. This will return all the values for Assets, Land, Accounts Receivable Cash,

etc., if they exist in the instance document.

{@concept.base-type = xbrli:stringItemType @concept.data-type != us-

types:zoneStatusItemType}

This will return all values that are string items and are not a zoneStatusItemType.

{@concept.is-numeric = true}

This will return all values that are numeric.

{@concept.is-monetary = true}

11 | XULE Language Syntax | October 2023

This will return all values that are monetary.

{@concept } or { @concept = * }

This will return all values in an instance as all facts have a concept. It will take the concept dimension out

of alignment. This is discussed later in the document - see Nested Alignment.

The concept filter can also operate on a set of element names using the ‘in’ keyword.

 {@concept in list(Assets, Land, Cash, AccountsReceivable)}

This will return all values Assets, Land, AccountsReceivable and Cash, if they exist in the instance document.

The concept filter can also operate on a converse set of element names using the ‘not in’

keyword.

 {@concept not in list(Assets, Land, Cash, AccountsReceivable)}

This will return all values that are not Assets, Land, AccountsReceivable and Cash, if they exist in the

instance document.

Period Filter

Facts can be restricted by filtering the period aspect with the following properties:

Filter Name Xule Syntax Filter by

Period default A period expression i.e. forever, date(‘2016-12-31’), duration(‘2016-

01-01’,’2016-12-31’), *

Period start start Date and time values to match start for a durational period. If the

fact is an instant, the period.end or period.start will return the

same date value.

Period end end Date and time values to match end for a durational period. If the

fact is an instant, the period.end or period.start will return the

same date value.

Period
duration

days Specify duration of time in days to return values that match that

period.

The following examples show how the period filter can be used:

{@period = forever }

12 | XULE Language Syntax | October 2023

This will return all facts with a forever duration.

{@period = date(‘2016-12-31’) }

This will return all fact values with an instant of 2016-12-31

{@period in list(duration(‘2016-01-01’, ‘2016-12-31’), date(‘2016-12-

31’)) }

This will return all fact values with an instant of 2016-12-31 and duration of 2016-01-01 to 2016-12-31.

{@period.start = date(‘2016-01-01’) }

This will return all fact values with a start date of 2016-01-01

{@period.days = 90}

This returns all duration facts that are 90 days in length.

{@period}

This returns all facts in the instance but will mean any calculations done on the result will take the period

out of aspect alignment - see Nested Alignment.

The period filter also supports automatic type casting where the type is known to be a date type

based on the filter request. For example, the following expressions are equivalent:

Period Start:

{@period.start = date(‘2016-12-31’) } -With explicit date type cast

{@period.start = ‘2016-12-31’} -Without type cast

Period End:

{@period.end = date(‘2016-12-31’) } -With explicit date type cast

{@period.end = ‘2016-12-31’} -Without type cast

Unit Filter

Facts can be restricted by filtering the unit with the following filters:

Filter Name Xule Syntax Filter by

Unit default A unit object. For single measure units the qname of the measure.

For multi-measure units, a combination of units or qnames with ‘/’

and ‘*’ operators to compose the multi-measure unit.

The following examples show how the unit filter can be used:

13 | XULE Language Syntax | October 2023

{@unit = xbrli:pure}

This will return all facts with a unit of pure.

{@unit = unit(xbrli:pure)}

This will return all facts with a unit of pure. This example is using the unit() function.

{@unit = unit(iso4217:USD, xbrli:shares)}

This will return all facts with a unit of USD/Share.

{@unit}

This will return all facts including those that do not have a unit and will take the unit out of aspect

alignment - see Nested Alignment.

{@unit = *}

This will return only those facts with a unit, and will take the unit out of aspect alignment - see Nested

Alignment.

Entity Filter

Filter Name Xule Syntax Filter by

Entity default entity(scheme, identifier), *

 @entity =

entity(‘http://www.xxx.com’,’0000320193’)

 @entity = *

Scheme scheme Pass the uri of the scheme. I.e. @entity.scheme = ‘xxx’

Identifier id Pass the id of the entity I.e. @entity.id = ’xxx’

Examples

{@entity.scheme = ‘http://www.sec.gov/CIK’ }

This will return all facts with an entity using the SEC scheme.

about:blank

14 | XULE Language Syntax | October 2023

{@entity.id=’0000320193’}

This will return all facts with an entity using the identifier 0000320193.

{@entity = *}

This will return all facts with entities in the instance. In XBRL JSON where an entity is not required, these

facts will not be returned.

Dimension Filter

Filter Name Xule Syntax Filter by

Dimension (aspect name)

Qname

Value of the dimension which is either a qname, a type, *, none

No
additional
dimensions

[],

dimensions() != *

Limits the facts to those that do not have the dimension aspects

specified in the fact set.

The following examples show how the dimension filter can be used:

{@dei:LegalEntityAxis = *}

This will return all the fact values with the legal entity axis, except for values with no dimensions (default

values). It also returns fact values that have other dimensions in addition to the legal entity axis because

the filter uses curly brackets.

[@dei:LegalEntityAxis = *]

This will return all the fact values with only the legal entity axis. It does not return default values because

the filter uses square brackets. It also will not return fact values that have other dimensions.

{@dei:LegalEntityAxis}

This will return all the fact values including default values in the instance, but takes the legal entity axis

out of alignment - see Nested Alignment.

[@dei:LegalEntityAxis]

This will return all the fact values with the legal entity axis. It also returns default values. It will not return

fact values that also have other dimensions.

[@dei:LegalEntityAxis != *] is the same as

[@] or []

15 | XULE Language Syntax | October 2023

This will return all values with no dimension aspects.

{@dei:LegalEntityAxis != *}

This will return all facts that do not have a legal entity axis.

{@dei:LegalEntityAxis = none}

This will return all facts that do not have a legal entity axis. This is the same as the above.

If a typed dimension is used and the value of the member on the typed dimension is nil, this is returned

if the none keyword is used.

To return typed dimensions with a value of nil requires the use of a where clause.

{where

taxonomy().concept(RevenueRemainingPerformanceObligationExpectedTimingOfSatisfa

ctionStartDateAxis) in $fact.dimensions-typed and ($fact.dimensions-

typed)[taxonomy().concept(RevenueRemainingPerformanceObligationExpectedTimingOfS

atisfactionStartDateAxis)] == none}

In addition, multiple dimensional filters can be defined in a fact set.

{@concept = Assets @dei:LegalEntityAxis=* @GeographyAxis in list(NY,

CA)}

This will return all facts for Assets that have a legal entity and geography for NY or CA defined.

Instance Filter

Facts can also be filtered by the XBRL instance reported. XULE filters on the instance of the

current filing being evaluated. XULE also allows multiple instances to be processed at the same

time. If no instance filter is defined then all instance documents are filtered on.

To add instances an instance object is defined that references the instance.

$wsfs = instance('https://www.sec.gov/edgar/wsfs-20211231.htm')

This loads the wsfs instance into the XULE processor.

https://www.sec.gov/edgar/wsfs-20211231.htm

16 | XULE Language Syntax | October 2023

Fact set selection defaults to the default instance document. To select facts from an alternative

instance document the fact set selection criteria must reference the instance object.

{@instance = $wsfs}

This returns all the facts from the wsfs instance.

Sets of facts can be returned from multiple instances using a list of instance objects.

{@instance in list($wsfs, $appl}

This returns all the facts from the wsfs and appl instances.

The default instance can also be specified using instance()

$default_instance = instance()

To select facts from the default instance the following syntax can be used.

{@instance = instance()}

This returns all the facts from the default instance.

The fact set above is the same as the following:

. {@}

This returns all the facts from the default instance if no additional instance objects are defined.

Facts from multiple instances can be returned by including instances in a list.

{@instance in list(instance(),$wsfs,$appl)}

This returns all the facts from the default instance and the instance defined by the named

variables.

Because there is no defined set of instances the wildcard and not in selectors are invalid. The

following examples are invalid.

{@instance not in list(instance(),$wsfs,$appl)}

{@instance = *}

Aspect Filter Operators

The following operators may be used with any aspect filter.

Equivalence Operator

Filters define equivalence using the = operator. For example, to get a list of facts that are assets,

use:

17 | XULE Language Syntax | October 2023

 @concept = Assets

Non-Equivalence (Complement) Operator

Filters define a complement using the != operator (“is not”). For example, to get a list of facts that

are not assets, use:

 @concept != Assets

In Operator

Filters define equivalence to an item in a set using the in operator. This works the same as “in” in

SQL. The in operator can be used with a single value (like the = operator) or with an array of

items.

 @concept in list(Assets, Liabilities)

This will return the facts defined with the concept assets or liabilities.

Combining Aspect Filters

When used together, aspect filters are separated with a space.

{@concept = Assets @dei:LegalEntityAxis = * @period = date(‘2014-12-

31’) @unit = unit(iso4217:USD)}

In the example above, the expression will return those facts with a concept of assets, a year end

of 2014 where the asset value is disaggregated by a legal entity, and a value measured in USD.

If the user wanted the data selected to include both facts in USD and facts that are in Euro they

cannot add another @unit to the expression because a fact cannot be in USD and EURO at the

same time. Use a list for multiple units:

{ @concept = Assets @dei:LegalEntityAxis = * @period = date(‘2014-12-

31’) @unit in list(iso4217:USD, iso4217:EUR) }

The in operator can be followed by a list that must be in parenthesis.1 This can be done with

any of the filters.

There is no restriction on including the same aspect filter multiple times in a fact set expression.

Each additional filter represents an AND operator and not an OR operator. Although the

following expression is valid, it will yield no results:

{@concept=Assets @concept=Liabilities }

1 = is used in the same way that “in” would be used in other languages.

18 | XULE Language Syntax | October 2023

This expression returns all those values that are both an asset and a liability. A value can only

be one or the other so the results of the expression will always be empty.

Where Filters

The where filter allows filtering by attributes of the fact or any attribute of an aspect. Although it

is more effective to filter by the aspect; the where filter allows further refinement of results after

all aspect filters have been applied.

The where filter can be used to filter facts on variables defined by navigating the DTS of the filing,

a base taxonomy, or derived from another fact set. Variables defined in other parts of the

expression can then be passed into the where clause.

The where filter can be used to filter facts where a function is applied to filter values that return a

boolean result such as is_base(concept). This function indicates if the concept is in a set of

predefined namespaces.

To evaluate fact set results with the where filter, use $fact to refer to those results. For example,

if we wanted to pull all negative values from a filing, that is expressed as follows:

{@ where $fact < 0}

Alternatively, the same facts can be pulled without the where clause (recall that the single @

aspect represents all facts in the instance) by using the following:

{@} < 0

To select all facts where; the unit is not a pure type; is less than zero, and; is accurate to 6

decimal places:

{@unit ! = xbrli:pure where $fact < 0 and $fact.decimals == -6}

In this case, the where clause must be used. In the previous case it was not necessary to use the

where clause as the fact set could be evaluated in a collapsed form without the where clause.

This is because the properties of the value (such as decimals) cannot be expressed using an

aspect filter.

This example shows the where clause used with a boolean function is_base()

 {@unit ! = xbrli:pure where (is_base($fact.concept))}

The where filter supports boolean and numeric comparison operators. The operators supported

by the where clause are listed in Appendix 1.

19 | XULE Language Syntax | October 2023

Fact Property Notation

The aspects and properties of the $fact variable are accessed with dot notation. The properties

match the aspect filter names:

Aspect and Fact Property Definition

$fact.concept Returns the concept of the fact.

$fact.period Returns the period of the fact.

$fact.unit Returns the unit of the fact.

$fact.entity Returns the entity of the fact.

$fact.decimals Returns the decimals of a fact.

$fact.dimension(qname of dimension) Returns the explicit member of the fact as a
concept for the specified dimension or
returns a value for a typed dimension.

$fact.dimensions()
$fact.dimensions-explicit()
$fact.dimensions-typed()

Returns a dictionary of key value pairs of
dimension keys and member values.

$fact.id Returns the id associated with a fact in the
instance. If there is no id associated with the
fact then a value of none is returned.

$fact.inline-scale Returns the inline scale of the fact if defined
in an inline XBRL document. Returns none if
no scale is defined.

The following examples show how the property notation can be used:

{@concept = Assets @dei:LegalEntityAxis =* where $fact > 0 and

$fact.dimension(dei:LegalEntityAxis).name == ParentCompanyMember }

This will return all facts with the ParentMember and legal entity axis.

{@concept = Assets where $fact.dimensions-

explicit().values.name.contains(ParentMember)}

This will return all facts with the ParentMember without having to know that the fact is on the legal

entity dimension.2

2 See Dictionary Operators and Properties dictionary operators later in the document.

20 | XULE Language Syntax | October 2023

Aspect Alias

XULE allows the setting of aliases for any aspect. This makes it easier to handle expressions in

the where clause as the names can be made shorter and easier to read. Typically, a dimension

will be given an alias which represents all members of the dimension. An alias can be defined by

using the as expression similar to SQL.

The following expression uses an alias named “$lea” to represent a set of members on the legal

entity axis.

{@concept = Assets @dei:LegalEntityAxis=* as $lea }

The alias can be used in the where expression:

{@concept = Assets @dei:LegalEntityAxis =* as $lea where $fact > 0 and

$lea == ParentCompanyMember }

This could also be written as follows:

{@concept = Assets @dei:LegalEntityAxis as $lea where $fact > 0 and

$lea == ParentCompanyMember}

This last example may be less efficient with some processors, however, since all asset values are

returned - including facts that are not on the legal entity axis - before being excluded by the where

clause.

Unknown Aspects

Use the dimensions() property to return a list of all dimensions and associated members of a fact.

If the dimension is known, it can be used as a property of the fact value using the dimension()

property.

Examples

{@concept = Assets where

$fact.dimensions().values.name.contains(ParentMember)}

This will return all facts for assets where the member is called parent member irrespective of the

dimension.

{@ where $fact.dimension(dei:LegalEntityAxis).name ==

ParentCompanyMember}

This will return facts with a legal entity axis and a member equal to ParentCompanyMember

21 | XULE Language Syntax | October 2023

Implicit Matching

In the following example a user wants to calculate shareholders equity for two of its legal entities

SnapsCo and WidgetsCo by deducting Liabilities from Assets. In this case Widgets Co has assets

of $100 and liabilities of $80. SnapsCo has Assets of $80 and Liabilities of $70. The shareholders

equity of WidgetsCo should resolve to $20 and $10 for SnapsCo to $10.

In this case we are deducting one fact set of values from another fact set of values. Using the

aspect filters to extract the values we need to do the calculation.

{@concept = Assets @dei:LegalEntityAxis in list(WidgetsCO, SnapsCO)} -

{@concept = Liabilities @dei:LegalEntityAxis in list(WidgetsCO,

SnapsCO)}

However the filters also determine alignment of facts. If an aspect is not defined it is assumed

that a calculation on a set of facts will align. We expect if we have multiple periods we will do the

calculation for each period and not across periods. By selecting the legal entities we take them

out of alignment.

This will create the following fact sets:

1. Assets(WidgetsC0) - Liabilities(WidgetsCo) = She => $20

2. Assets(WidgetsC0) - Liabilities(SnapsCo) = She => $30

3. Assets(SnapsC0) - Liabilities(WidgetsC0) = She => $-10

4. Assets(SnapsC0) - Liabilities(SnapsCo) = She =>$10

When the user actually only wanted this:

1. Assets(WidgetsC0) - Liabilities(WidgetsCo) = She(WidgetsCo) => 20

2. Assets(SnapsC0) - Liabilities(SnapsCo) = She(SnapsCo) => 10

Use double @@ to force alignment in a filter’s definition. For example, to calculate shareholders

equity for multiple entities, model the following expression:

{@concept = Assets @@dei:LegalEntityAxis = (WidgetsCO, SnapsCO) } -

{@concept = Liabilities @@dei:LegalEntityAxis = (WidgetsCO, SnapsCO)}

The double @@ filters on the values and keeps them in aspect alignment. To avoid the cartesian

product the double @@ sign is used on the aspect to be matched. This is the same as an

uncovered aspect in XBRL formula.

If an aspect is left out of the fact set expression, that aspect defaults to implicit matching and is

matched automatically. For example, these two expressions are identical:

22 | XULE Language Syntax | October 2023

{@concept = Assets }

{@concept = Assets @@period @@unit @@entity @@dei:LegalEntityAxis}

In fact, a @@ expression is unnecessary if the aspect after the @@ does not express a filtered

value.

Covering

Covering excludes an aspect from implicit matching when performing an operation on facts as

shown in the example above. The syntax @@ is used to align an aspect and the single @ is used

to cover (or un-align) an aspect.

In some cases a user may want to un-align or cover all aspects of a fact, but is unaware of what

the actual aspects to cover on the fact are. In these cases, the keyword covered is used to un-

align or cover all aspects of the fact. This is best explained with an example.

Examples

 {covered @Assets}

This will return all the values for assets, but will have no observable effect. It will have an impact when

an aggregation function such as count() is used. See examples below.

{@concept = Assets} < 100000 and {covered @concept =

dei:EntityFilerCategory} == 'Large Accelerated Filer'

This will return a boolean result of true if assets are less than 100,000 and the company is a large

accelerated filer. Because assets could have dimensional aspects and be reported for many periods, it

would not align with the EntityFilerCategory. The EntityFilerCategory only exists in a single period and has

no dimensional aspects. By covering the entityFilerCategory fact set, it can be lined up and evaluated

against each value for assets irrespective of its aspects.

count(list({covered @concept = Assets}))

This will return an aggregate count of all facts using the Assets concept in the instance.

count(list({@concept = Assets}))

This will return a count of 1 for every fact using the Assets concept in the instance. A count of 2 is returned

if a fact is duplicated. Aggregation functions only aggregate values with the same dimensions.

In some situations the user wants to cover all the dimensions but leave values in alignment for

periods, units or concepts. Normally the dimensions are taken out of alignment with the @.

However if you want to cover all dimensions it is not feasible to make a large list of all possible

dimensions in the filing. The key word 'covered-dims’ can be used to cover all dimensions in the

returned fact set.

23 | XULE Language Syntax | October 2023

exists({covered-dims @concept = Assets}) and {@concept = Liabilities

where $fact < 0}

A variable which represents a fact set cannot be covered. The underlying fact set defining the

variable must be covered.

Nested Alignment (Alignment Windows)

In some cases, multiple fact sets need to be aligned using different aspects when adding,

subtracting, multiplying and dividing. Generally, adjusting alignments is done with @@. However,

when addition and subtraction operations are required between fact sets with different aspects,

then the facts with the same aspect alignment need to be grouped in a nested structure.

For example, a company wants to calculate their net monthly payment for electricity service. The

actual net monthly payment is expressed as follows:

{@actualMonthlyPayment} - {@actualMonthlyReimbursement}

This will return the net payment. All periods, units and dimensions align - i.e. the actual

reimbursement for the month will be deducted from the actual payment for the same month and

not for a different month.

The company also has a contractual monthly rate through an agreement with the electric utility,

which is reported with the concept monthly payment. The monthly payment is a fixed amount with

a period aspect value of forever. I.e. It is a monthly contract rate that is agreed for the term of the

agreement. To determine the monthly difference between what they actually paid and what they

were obligated to pay, the company deducts the actual payment and reimbursement from the

contracted monthly rate. You might think this could be represented as follows:

{@contractedMonthlyPayment} - {@actualMonthlyPayment} -

{@actualMonthlyReimbursement}

This calculation would produce incorrect results because the contracted monthly payment has no

period aspect and the actual payment and reimbursement do have a quantifiable monthly period.

As a result, the calculation would not be performed. To get the correct value, the calculation needs

to be done without regard to the period. To achieve this the period is taken out of alignment for

the contracted monthly payment as shown below.

{@contractedMonthlyPayment @period} - {@actualMonthlyPayment} -

{@actualMonthlyReimbursement}

It’s also necessary to take the actual payment and reimbursement out of period alignment so they

can be compared with the contracted monthly payment. Furthermore, it’s also necessary for the

24 | XULE Language Syntax | October 2023

last two elements to be aligned by period with each other, so the monthly payment and

reimbursement are subtracted using the same period. To accomplish this, the following

relationship is grouped together in parenthesis as a new fact set:

{{@actualMonthlyPayment} - {@actualMonthlyReimbursement}}

This new group can now be compared to the contracted monthly payment as long as the period

is taken out of alignment:

 {@period {@actualMonthlyPayment} - {@actualMonthlyReimbursement}}

The full calculation is expressed as follows:

{@contractedMonthlyPayment @period} - {@period {@actualMonthlyPayment}

- {@actualMonthlyReimbursement}}

If an instance has a contracted rate of $200 and paid the following amounts:

Month actualMonthlyPayment actualMonthlyReimbursement Difference

Jan 210 12 198

Feb 205 11 194

Mar 212 10 202

Apr 210 6 204

Applying the full calculation from above produces the following results:

Month Actual Monthly

Payment

Actual Monthly

Reimbursement

Netted

Payment

Contracted Amount

$200

Difference

Jan 210 12 198 200 2

Feb 205 11 194 200 6

Mar 212 10 202 200 -2

Apr 210 6 204 200 -4

Note that the value of $200 binds with every period even though there is only one value reported

of $200. The value of $200 aligns with every period because the @period associated with the

concept forces it to bind with all other values. In addition, the Netted Payment value for every

25 | XULE Language Syntax | October 2023

period must also be taken out of period alignment so it can bind with the contracted amount of

$200. The inner fact set remains in alignment with the period and the outer fact set is not in

alignment with the @period.

 {@period {@actualMonthlyPayment} - {@actualMonthlyReimbursement}}

The first calculation is nested within the outer fact set. Nesting fact sets allows aspects to be

removed depending on how many aspects need to be removed and the different combinations

they have.

In the following example an auditor wants to test that the DefinedBenefitPlanFundedPercentage is

calculated properly by dividing the Plan assets by the Plan obligations. The assertion is as follows:

DefinedBenefitPlanFairValueOfPlanAssets / DefinedBenefitPlanBenefitObligation =

DefinedBenefitPlanFundedPercentage

This has some complications as the plan assets and obligations are measured in monetary units

and the funded percentage has no units as it is a percentage or is a pure number. This means

the units need to be taken out of alignment but it’s necessary to divide plan assets by plan

obligations with the same units. To do this, the nested structure can be used:

{@unit{@DefinedBenefitPlanFairValueOfPlanAssets} /

{@DefinedBenefitPlanBenefitObligation}}

Now the resulting calculation can be compared to the funded percentage concept of Defined

Benefit Plan Funded Percentage.

{@DefinedBenefitPlanFundedPercentage @unit} !=

{@unit

{@DefinedBenefitPlanFairValueOfPlanAssets}

/

 {@DefinedBenefitPlanBenefitObligation}

}

This will return cases where the funded percentage is not the same as the calculated value.

Nil Values

XULE by default includes nil values in the fact set. A xule processor can be instructed to exclude

nil values from the fact set when processing is initiated. In addition, a fact set can be defined to

exclude nil values by using the keyword nonils. When a value of a fact is returned for a nil item it

is returned with a value of “none”.

{covered nonils @DefinedBenefitPlanFundedPercentage}

26 | XULE Language Syntax | October 2023

This will exclude nil facts from the fact set. The “nonils” keyword overrides the processor settings.

In addition, the keyword nils can be set to include nils. This is used if the processor is set to not

handle nils.

Nil Values in an Expression

In the case of nonils the processor ignores nil values. However, in some cases nil values may

need to be defined in an expression. The XULE processor treats nil values as a ‘none’, and is

treated the same way as none would be in an expression. In some cases nil values in the

instance need to be treated as if it has a value of zero. If two values are compared such as nil

>= 0 this will return a value of none. To treat a nil as a zero value this must be explicitly defined

in the expression. This is done using the nildefault keyword.

{ nildefault @Assets} != {nildefault @LiabilitiesAndStockholdersEquity}

This expression will treat any nil values returned as if they had a value of zero. In the case

above if Assets has a value of nil and Liabilities and equity has a value of zero then the

expression will resolve to false. If the nildefault is left off then the expression will result in a

boolean of true.

The value returned for nil when the nildefault keyword is used will differ depending on the type

of the concept. If the concept is a numeric type then a value of zero is returned. If the concept

is non numeric then an empty string is returned.

None Values and Iteration

A value of none occurs when a rule returns a value of none. For example a rule that checks

equivalence such as the following:

@Liabilities + @Equity != @LiabilitiesAndEquity

If the value of Equity does not exist in the instance the processor will return a value of none.

However this does not mean that the rule would terminate with no result. It would continue to

evaluate for every instance (iteration) where Liabilities and LiabilitiesAndEquity appear with the

same aspects. In this case Equity with a value of none would be treated as if it had a value of 0.

If both Liabilities, and Equity were none and LiabilitiesAndEquity had a value then the processor

would be skipped as addition and subtraction of nones skips the iteration.

exists(@LiabilitiesAndEquity) and exists(@Assets)

27 | XULE Language Syntax | October 2023

In this case the exists(@LiabilitiesAndEquity) resolves to a value of none and Assets exists

resolves to true. A value of true combined with a value of none with AND resolves to a skip

instruction. This means that the iteration will skip and will return nothing.

Handling of None

If a none value is returned and compared to other values then the following rules apply:

Addition and Subtraction: A none value can be added or subtracted from another value and is

treated as if it has a zero value. (Unless overridden by a specific operator3). If both are none then

the iteration is skipped.

none + none = skip

If the value is none plus a string value the empty none is treated as an empty string.

I.e. None + “hello” = “hello”.

Adding and subtracting None and Skip: The following rules apply :

none + skip = skip

skip + none = skip.

Multiplication and Division: A none value can be multiplied and divided by another value and a

none value in these cases will skip to the next iteration.

7 / none = skip

Greater/Less than: A comparison to a none value using greater than or less than then will return

none when compared to another value.

Equal: If both values are None then will return a value of true. If one is a none value and the other

is any value then the processor will return a value of false.

Booleans: If a None value is included in a boolean then the following occurs.

1. NONE and TRUE: will SKIP the iteration

2. NONE and FALSE: will return FALSE

3. NONE and NONE: will SKIP the iteration

4. NONE or TRUE: will return TRUE

5. NONE or FALSE: will SKIP the iteration

6. NONE or NONE: will SKIP the iteration

Exists: The exists function will return a value of true if a set or a list contains only a value of

None.

3 See operator section of this document to control bindings if a value is none.

28 | XULE Language Syntax | October 2023

Skipping an Iteration

An iteration can be skipped if certain conditions are defined in the rule. This could be done in

an if statement for example:

if (exists({covered @dei:DocumentType}))

 skip

else

 true

This will check if the document type is reported. If it is then the processor will skip the iteration

without returning any value.

Fact Set Grammar Syntax

The following diagram shows the syntax of the fact set and the available options.

The fact set body is comprised of the following:

The aspect filter has the following options available:

29 | XULE Language Syntax | October 2023

An aspect name can be comprised of any or all of the following:

Defining Fact Sets as Variables

When results in a fact set are converted to a variable, it maintains all the properties and attributes

of the fact set from which it was derived. In an example above, a user calculated shareholders

equity by deducting Liabilities from Assets. The shareholders equity variable would contain all the

facts for all the periods and dimensions that resulted from the calculation. The variable is defined

as follows:

$she = {@concept = Assets @@dei:LegalEntityAxis = (WidgetsCO, SnapsCO) } -

{@concept = Liabilities @@dei:LegalEntityAxis = (WidgetsCO, SnapsCO)};

Variable endings can optionally be expressed with a semicolon for readability.

Cube as a Filter

A fact set can be defined by returning the facts based on a set of aspects, and filtering results

with a where clause. In many filing regimes however, facts are reported using an XBRL hypercube

as a template. These cubes establish a multidimensional grid on which facts need to be reported.

These cubes can also exclude facts that should not be reported in the cube. Rather than defining

all the concepts, axes and members associated with a cube using an aspect filter, a cube filter

can be defined to do this. This is defined as follows:

30 | XULE Language Syntax | October 2023

{@cube = taxonomy().cube(StatementTable, BalanceSheet) }

This will return all the values associated with the cube StatementTable. In the US-GAAP Taxonomy, this

returns all facts on the face financial statements.

Cubes can also be specified by the hypercube concept name or drs role of the cube.

{@cube.name = StatementTable}

This will return all the values associated with the any cube named StatementTable. In the US-GAAP

Taxonomy, this returns all facts on the face financial statements.

In the example above, a cube may exist in multiple roles and the facts associated with a cube in

a different role may be different. To restrict values returned to those of a specific cube in a specific

role then the where clause is used.

Facts in a cube can also be specified by defining the drs role4.

{@cube.drs-role = BalanceSheet}

This will return all the values associated with the any cube in drs role BalanceSheet. In the US-GAAP

Taxonomy, this returns all facts on the face financial statements.

Although @cube looks like an aspect of a fact set, ‘cube’ is not an aspect. Using @cube has no

effect on the alignment of the returned facts. @cube is only used to filter facts for a fact set.

{@cube.name =StatementTable @cube.drs-role = BalanceSheet }

{@cube=taxonomy().cube(StatementTable, BalanceSheet)}

This will return all the values associated with the cube StatementTable in the balance sheet extended

link.

{@cube != none}

This will return all the values associated with any cube.

{@cube = none}

This will return all the values not in a cube.

4 See DRS Role.

31 | XULE Language Syntax | October 2023

The filters of a fact set (anything with @...) all have to be true to select a fact. In the case where

you have a fact value that is both in ParentheticalTable/IncomeStatement and

StatementTable/BalanceSheet and a fact set selector of {@cube.name=StatementTable

@cube.drs-role=IncomeStatement}, both filters @cube=StatementTable and @cube.drs-

role=IncomeStatement are true for the fact and therefore the fact should be selected. The

correct way to filter for facts in StatementTable AND IncomeStatement is to use the @cube

fact set filter. This can be used with the cube property of a taxonomy as shown below:

{@cube=taxonomy().cube(StatementTable, IncomeStatement)}

Since there is not a cube for StatementTable AND IncomeStatement, the

taxonomy().cube(StatementTable, IncomeStatement) will return none and the fact set will

not select any facts.

When using @....=.... syntax, there are two things going on. First, a filter identifies facts to select

and second if this is an aspect, it specifies an aspect to cover. @cube is NOT an aspect. It is

only used for filtering. With aspects, each fact can only have one value for an aspect (i.e. a fact

cannot have 2 concepts or 2 periods or 2 units or 2 values for a dimension). So when specifying

multiple aspect properties, they all have to be true for a fact for the fact to be selected. For

example:

{@concept.local-name='Assets' @concept.namespace-uri =

'http://fasb.org/us-gaap/2018'}

Only facts that both have a local name of 'Assets' AND the namespace is us-gaap/2018 will be

selected. This is because both these filters have to be true for the fact and since a fact can only

have one value for the concept aspect.

This is not true for @cube. A fact can be in multiple cubes. Hence, to satisfy all the filters for:

{@cube.name=StatementTable @cube.drs-role=IncomeStatement}

The filter will get the facts in a StatementTable cube and in the IncomeStatement drs-role.

Navigation

Navigation is used to traverse the relationships in a taxonomy. A navigation returns a set. The

items in the set are determined by what is provided in the navigation. In its simplest form,

navigation requires a direction.

navigate descendants

This will return all the descendent concepts across all networks in the instance taxonomy.

http://cube.name/
http://fasb.org/us-gaap/2018
http://cube.name/

32 | XULE Language Syntax | October 2023

 navigate parent-child descendants

This will return all descendant concepts in the presentation parent-child relationships of the instance

taxonomy.

Arcrole

The navigation can be limited to specified arcroles.

navigate parent-child descendants

This will return all the descendent concepts in the presentation parent-child relationships in the

instance taxonomy.

The arcrole is specified using the last path component of the arcrole uri or the full uri of the arcrole

as a string. These two navigations operations are equivalent:

● navigate parent-child descendants

● navigate ‘http://www.xbrl.org/2003/arcrole/parent-child’ descendants

The allowable arcroles include those defined in XBRL specifications and any arcrole defined in

the taxonomy currently being navigated.

When the last path component of the arcrole is used, the last path component must be unique

within the taxonomy.

Direction

The direction indicates the path of the navigation. The allowable directions are:

● descendants

● children

● ancestors

● parents

● siblings

● previous-siblings

● following-siblings

For descendants and ancestors, the number of levels to navigate can be specified after the

direction.

navigate parent-child descendants 2

This will navigate to the grand children of the root concepts.

When no level is specified, the navigation will traverse to all levels.

33 | XULE Language Syntax | October 2023

By default, navigation returns the target concepts of the relationships exclusive of the starting

concepts in the returned list. To include starting concepts, use ‘include start’ after the direction.

 navigate parent-child descendants include start

This will return all concepts in all parent-child relationships, including the root concepts.

navigate parent-child descendants 2 include start

This will return the root, child and grandchild concepts.

When using ancestors and parents without a starting element the default start point is the root of

the tree. This means the following expression will return no results:

navigate ancestors

This will return no results.

Role

An extended link role may be specified by the keyword ‘role’ followed by the role. The role is

specified with the last component path. When the last path component of the roles used, the last

path component must be unique within the taxonomy. These two operations are equivalent:

● navigate parent-child descendants role

‘http://www.abc.com/role/ConsolidatedBalanceSheets’

OR

● navigate parent-child descendants role ConsolidatedBalanceSheets

This will return all the target concepts in the presentation of the balance sheet only. Note that a short

name can be used. This should not use quotes.

Any role defined in the taxonomy can be referenced including roles defined in a generic graph. The

standard roles that can be used are as follows:

● parent-child

● summation-item

● dimension-domain

● dimension-default

● domain-member

● hypercube-dimension

● all

● general-special

● essence-alias

http://www.abc.com/role/ConsolidatedBalanceSheets

34 | XULE Language Syntax | October 2023

In addition to these roles there are custom arc especially for navigating dimension described in the

section on navigating dimensions.

Starting and Ending Navigation

By default, the navigation starts at the roots. To start at a particular concept, add the keyword

‘from’ and the concept or concept name.

 navigate parent-child descendants 2 from Assets

This will return all the child and grandchild concepts starting from Assets.

An ending concept may also be specified by adding the keyword ‘to’.

navigate parent-child descendants from Assets to OtherAssetsCurrent

This will return all the concepts that are descendants of Assets but will stop at OtherAssetsCurrent. The

results will only include those concepts that are in the path between Assets and OtherAssetsCurrent.

Concepts in paths that do not end with OtherAssetsCurrent will not be included in the result.

If an ending concept is provided with the keyword ‘to’ then the relationships between the starting

concept or root concept to the ‘to’ concept will be returned. If a tree or graph is navigated and the

‘to’ concept is never reached then no results will be returned.

Stopping Navigation

Navigation of a tree or graph can be stopped when certain conditions on the relationship are

encountered. This is done using the keywords ‘stop when’ followed by an expression that

resolves to true. The expression will evaluate an attribute of the relationship such as when the

target-name equals a certain concept or the weight is negative one. This enables you to navigate

a tree and stop navigating down a given branch when a condition is met on the relationship. The

‘stop when’ keyword differs from the ‘to’ keyword in that all relationships that evaluate to false

will be returned. Using the ‘to’ concept will only return relationships if the ‘to’ concept actually

exists in the tree or graph.

The relationship that evaluates to true when using ‘stop when’ will be returned as part of the

result. For example if you navigate a calculation tree and stop navigation when you reach the

target concept “Net Income”, the relationship with the target concept of “Net Income” will be

returned. This relationship could then be removed using the ‘where’ clause discussed below.

navigate parent-child descendants from IncomeStatementAbstract stop

when $relationship.target.name == GrossProfit where

$relationship.target.name != GrossProfit returns target

35 | XULE Language Syntax | October 2023

This will return all the descendants concepts of IncomeStatementAbstract in the presentation linkbase of

the filing, but will exclude any children of GrossProfit and because of the where clause will also exclude

the concept GrossProfit.

Taxonomy

By default, navigation occurs in the taxonomy of the instance document. A different taxonomy

may be specified by using the keyword ‘taxonomy’ followed by the taxonomy.

navigate parent-child descendants from Assets taxonomy

taxonomy(‘http://xbrl.fasb.org/us-gaap/2016/entire/us-gaap-entryPoint-

std-2016-01-31.xsd’)

This will return all the descendants of Assets in the US GAAP taxonomy.

If there are multiple instances documents, the taxonomy of the referenced instance can be

identified by using the taxonomy property of the instance.

navigate parent-child descendants from Assets taxonomy

$myInstance.taxonomy

This will return all the descendants of Assets in the referenced instance document..

Filtering Results

Navigation ultimately returns relationship information based on the relationship found during the

traversal. A ‘where’ expression can be used to filter the found relationships. For each found

relationship, the ‘where’ expression is evaluated. When the result of evaluating the ‘where’

expression for a relationship is true, the relationship is included in the result.

A special variable $relationship is available in the ‘where’ expression to refer to the relationship

being filtered.

navigate parent-child descendants from Assets where not

$relationship.target.is-abstract

This will return all non-abstract descendants of Assets.

Return Options

The default result of navigation returns a set of the target concepts of the relationships that are

found in the navigation.

36 | XULE Language Syntax | October 2023

The ‘returns’ keyword can be used to specify additional components of the relationship to return.

 navigate parent-child descendants from Assets returns (source)

This will return a list of the source concepts of the relationships.

The components that may be returned are:

● source The source concept of the relationship

● source-name The QName of the source concept of the relationship

● target The target concept of the relationship

● target-name The QName of the target concept of the relationship

● order The value of the order attribute on the relationship

● weight The value of the weight attribute on the relationship

● preferred-label The label object for the label indicated by the preferred label for
the target concept. This includes uri, description, lang and text
properties..

● preferred-label-role The role object for the preferred label. This includes the uri,
description and used on properties.

● relationship The relationship

● role The extended link role of the network

● role-uri The extended link role uri of the network

● role-description The description of the role of the network

● arcrole The arcrole of the network

● arcrole-uri The arcrole uri of the network

● arcrole-description The description of the arcrole of the network

● arcrole-cycles-
allowed

The cycles allowed attribute of the arcrole definition. One of:
‘any’, ‘undirected’, ‘none’

● link-name The QName of the extended link element

● arc-name The QName of the arc element

● network The network

● cycle An indicator if the relationship starts a cycle in the navigation

● navigation-order The calculated sibling order of the relationship target. This is not
the order on the relationship but is calculated during the

37 | XULE Language Syntax | October 2023

navigation

● navigation-depth The depth of the relationship target concept from the starting
concept

● result-order The order of the result within the full result list

● arc attribute Specified by the QName of the attribute. The value of the arc
attribute. Unlike the other return components, this is not a
keyword “arc attribute”, but the actual qname of the arc attribute
is used in the “returns” statement. For example:
 returns (source-name, target-name, ex:specialAttribute)
“ex:specialAttribute” is the qname of the attribute on the arc.

● dimension-type The purpose of the target concept in dimensional navigation.
See Dimensional Navigation.

● dimension-sub-type The more specific purpose of the target concept in dimensional
navigation. See Dimensional Navigation.

● drs-role The initial role of the dimensional relationship set. See
Dimensional Navigation.

Multiple components may be returned by composing them in a list. In this case the navigation will

return a list of lists when executed. The inner list will be the values corresponding to the specified

components.

navigate parent-child descendants from Assets returns (target,

preferred-label)

This will return a list of the relationships. Each item in the list will be a list with two values, the target

concept and the preferred label for the relationship.

The ‘include start’ keyword creates an extra result for each starting concept returned as the

target. This affects the way the following return components are returned:

● source Returned as None

● source-name Returned as None

● target The start concept

● target-name The QName of the start concept

● order Returned as None

● weight Returned as None

● preferred-label Returned as None

● relationship Returned as None

38 | XULE Language Syntax | October 2023

● cycle False

● navigation-order The calculated sibling order of the relationship target. This is
not the order on the relationship but is calculated during the
navigation

● navigation-depth 0

● result-order The order of the result within the full result list

● arc-attribute Returned as None

● dimension-type The dimension type of the start concept

● dimension-sub-type The dimension subtype of the start concept

Returning a dictionary

The default result value is a list. When multiple return components are returned, it can be more

useful to have the result returned as a dictionary. The ‘as dictionary’ keyword is used to structure

returned results as key-value pairs.

navigate parent-child descendants from Assets returns (source, target,

role) as dictionary

This will return a list of dictionaries. Each dictionary will have three entries with the keys of “source”,

“target” and “role”.

Dictionary 1

Key Value

source Assets

target AssetsCurrent

role balanceSheet

Dictionary 2

Key Value

source Assets

target AssetsNoncurrent

role balanceSheet

Dictionary 3

Key Value

source Assets

target AssetsOther

role balanceSheet

Dictionary 4

Key Value

source AssetCurrent

target Cash

role balanceSheet

Dictionary 5

Key Value

source AssetsCurrent

target CashEquivalents

role balanceSheet

39 | XULE Language Syntax | October 2023

Returning a list - duplicate results

Navigation normally returns the results in a set or a list. Since sets cannot contain duplicates, the

navigation result is deduplicated. To include duplicate values in the return, use the ‘list’ keyword.

navigate parent-child descendants from Assets returns list

This will return a list target concepts that are descendant from Assets. If a concepts is in more than one

branch, it will be included multiple times in the result.

The order of the result is based on depth first traversal of the navigation. The order of the starting

concepts is undefined, but is deterministic. The order of siblings is determined by the order

attribute of the sibling relationships. When sibling relationships have the same order, then the

order is undefined, but is deterministic.

Returning networks

The normal result of navigation is a flat list. The results can be organized by networks by using

the ‘networks’ keyword.

navigate parent-child descendants returns by network

This will return the following dictionary of lists:

Key Value
Network One (B, C)
Network Two (Y, Z)

navigate parent-child descendants include start returns by network

(target, role) as dictionary

This will return a dictionary of networks. The value for each network is a list of dictionaries of each

relationship.

Key Value

Network One

List of dictionaries

Dictionary 1

Key Value

Dictionary 2

Key Value

40 | XULE Language Syntax | October 2023

target B

role role-one

target C

role role-one

Network Two

List of dictionaries

Dictionary 1

Key Value

target Y

role role-two

Dictionary 2

Key Value

target Z

role role-two

$a = navigate parent-child descendants include start returns by network

(target, role) as dictionary

$Network_uri = set(for $network in $a.keys()

if ($a[$network][1][‘target’]) == “B”)

 $a[$network][1][‘role’].uri OR $a[$network].role.uri

else

 none)

This will return all the role URI’s that include the concept B as a target.

Returning paths

Default navigation returns a list of results. Alternatively, the results can be organized by the path

of the navigation. This is indicated by the keyword ‘paths’. A path result uses a double list. The

outer list contains a list for each path of traversal. The inner list contains each result in the order

of the traversal.

navigate parent-child descendants include start from A returns paths

This will return the following lists:

● (A,B,D)

● (A,B,E)

41 | XULE Language Syntax | October 2023

● (A,C,F)

● (A,C,G)

navigate parent-child descendants include start from A returns paths

(source, target, order)

This will return the following lists:

● ((None, A, None),(A,B,1),(B,D,1))

● ((None, A, None),(A,B,1),(B,E,2))

● ((None, A, None),(A,C,2),(C,F,1))

● ((None, A, None),(A,C,2),(C,G,2))

The following example demonstrates how paths can be used to calculate the effective weight

between two elements.

product(navigate summation-item descendants include start from

ProfitLoss to Revenues returns paths (weight))

Dimensional Navigation

Dimension navigation is used to navigate dimensional relationship sets (DRS). The DRS includes

relationships from multiple arc roles and extended link roles to form a model of the cubes defined

in the taxonomy. The following diagram shows how the dimension arc roles are composed into

the DRS.

42 | XULE Language Syntax | October 2023

Dimensional navigation will traverse the multiple arc roles that make up a DRS. For the purpose

of dimensional navigation, the hypercube is the root of the structure. This is slightly different than

the standard XBRL dimension model which treats the primary item as the root of the structure.

Note that the ‘all’ arc role in the XBRL dimension model is from the primary item to the hypercube.

In dimensional navigation, this is flipped and the all arc role is treated as from the hypercube to

the primary item.

To indicate dimension navigation add the ‘dimensions’ keyword.

navigate dimensions descendants from dei:LegalEntityAxis

This will return all the dimension members of the Legal Entity Axis (dimension). If the

dei:LegalEntityAxis dimension is used in multiple cubes with a different set of members, this will

traverse each version of the dimension.

Navigation can be constrained to a single cube by using the ‘cube’ keyword.

navigate dimensions descendants from dei:LegalEntityAxis cube us-

gaap:StatementTable

This will return all the dimension members of the Legal Entity Axis (dimension) in the us-

gaap:StatementTable.

Arc roles can be used to limit the results of the navigation to only those relationships with the

specified arc role.

navigate dimensions dimension-domain descendants from us-

gaap:StatementTable

This returns the domain concepts that are in the us-gaap:StatementTable.

Pseudo arc roles

In addition to the arc roles that are used to define dimensional relationships, these additional

pseudo arc roles can be used:

pseudo arc role Description

hypercube-primary Relationships between a cube concept and the primary item
concept. Similar to the ‘all’ arc role to define a relationship
between a primary item and a cube, but in the opposite
direction.

dimension-member Domain-member relationships that stem from a dimension
concept via a dimension-domain relationship. Only include
member concepts that are members of a dimension (not a
primary item).

43 | XULE Language Syntax | October 2023

primary-member Domain-member relationships that stem from the primary
concept of a cube. Only include member concepts that are
members of a primary item (not a dimension).

Any of the standard dimension arc roles, except for all and not-all, may be used for dimensional

navigation. In dimensional navigation, the domain-member arc role applies to both members of

a dimension and the members of the primary item.

When using an arc role or pseudo arc role the navigation will still traverse the DRS from the

starting concepts regardless of the arc role specified. Only the relationships from the specified

arc role will be returned.

navigate dimensions dimension-member descendants from us-

gaap:StatementTable

This will return all the members of any dimension of the us-gaap:StatementTable. Note that the

traversal starts from the hypercube concept on the hypercube-dimension relationship and then to

the domain members via the dimension-domain relationships. Only the domain-member

relationships are returned.

DRS role

Dimensional navigation can traverse more than one extended link role. The original role used on

the ‘all’ relationships between the primary item concept and the hypercube concept is the drs-

role. This remains the same when navigating a DRS even though the extended link role may

change.

To limit dimensional navigation to only one drs role the ‘drs-role’ keyword can be used.

navigate dimensions descendants from us-gaap:StatementTable drs-role

BalanceSheet

This returns the dimension and the domain concepts that are in the us-gaap:StatementTable.

Like extended link roles, the drs-role can be specified using the uri of the role in quotes or just the

last path component. When the last path component of the drs-role is used, the last path

component must be unique within the taxonomy, otherwise it is an error.

Dimension return components

In addition to the non-dimensional navigation return components, dimensional navigation can use

the following return components:

Return component Description

44 | XULE Language Syntax | October 2023

dimension-type The dimension-type return component identifies the dimensional

purpose of the target concept. The values are:

● hypercube

● primary-member

● dimension

● dimension-member

dimension-sub-type The dimension-sub-type return component identifies the specific

dimensional purpose for dimensions and members. The values

are:

For dimension-type = dimension

● explicit - explicit dimension concepts

● typed - typed dimension concepts

For dimension-type = dimension-member

● default - the default member of an explicit dimension

For dimension-type = primary-member

● primary - the primary item

drs-role The extended link role of the primary to hypercube relationship (‘all’
relationship). In a dimensional relationship set, the role can be
different for different relationships. The drs-role is constant for
relationships that make up the dimensional model of a cube.

usable For members, identifies the value of the usable attribute. If there is
no usable attribute it defaults to true.

Alternative to dimensional navigation

Beside dimensional navigation, dimensional information can be accessed with dimension

functions.

● Return the dimensions associated with a given member dimensions($member)

● Return the members on a dimension on a role member($dimension)

● Return all the dimensions in a taxonomy taxonomy().dimensions

● Return all the hypercubes in a taxonomy taxonomy().cubes

Navigation Expression

navigate dimensions {arc role} {direction} {levels} include start from

{starting concepts} to {ending concepts} stop when {expression} role

{roles} drs-role {DRS roles} linkbase {linkbase element name} cube

{hypercube concept} taxonomy {taxonomy} where {where expression}

returns by network list |set paths set {return components} as

list|dictionary

45 | XULE Language Syntax | October 2023

Note, the only required component of navigation is the direction.

navigate descendants

This will return all the concepts that participate in any relationship, excluding the root concepts.

navigate descendants include start

This will return all the concepts that participate in any relationship.

Filtering Collections

The filter expression is used to filter a collection such as a set,or a list. A filter returns a set or a

list depending on the collection type passed to it. The items in the collection are determined by

what is provided in the filter expression. In its most simplest form the filter expression requires a

collection to filter.

filter $a

This returns all the items in the set.

The filter expression uses a where clause to filter the list or set on a condition. The where clause

uses the $item variable to represent the current value in the set.

 filter set(1,2,3) where $item > 1

This returns a set of (2,3)

The values returned by the filter can also be defined. For example if a set of of qname concepts

is in a set these can be turned into local names using the filter expression:

46 | XULE Language Syntax | October 2023

filter $networkQname returns $item.local-name

This returns a set of local names from the set of qnames defined in the variable

$networkQname.

This alleviates the need to create a for loop to iterate through the set. The syntax of the filter is

as follows:

The returns expression can also incorporate strings to build up text based output.

(filter $sub-periods returns "\t" + $item.period.string + "\t" +

$item.string).join("\n");

This returns a string value showing the period of the item and the item separated by tabs and

ended with a carriage return.

Conditional and Iterative Statements

Iterative Statements (Loops)

In XULE, a for loop can be used to iterate through a set of values. There are a number of XULE

objects that need to use the for loop to access values. These include the following:

● Relationships

● References

● Reference Parts

● Labels

● Networks

● Concepts

● Or any other set or list.

The for loop has the following structure:

for (variable in set)

 Repetend

Where repetend is the thing to be repeated. For loops in XULE do not define how many times the

loop should execute. The loop will run until it gets to the end of the set or list. The for loop has

47 | XULE Language Syntax | October 2023

parentheses to indicate the set or object to loop through. The set can be entered as a variable or

as an expression. For example

for ($c1 in taxonomy().concepts)

 $c1.name

This for loop evaluates the taxonomy().concepts to a list of all concepts in the taxonomy. The for loop then

iterates through each concept and returns the qname of each concept in the taxonomy. The loop will be

repeated for every concept in the taxonomy.

The results of a for loop can also be returned as another set by defining a variable. For example

$string_name_of_concepts = set(for ($c1 in taxonomy().concepts)

 $c1.name.local-name)

This for loop evaluates the taxonomy().concepts to a list of all concepts in the taxonomy. The for loop then

iterates through each concept and returns the local name of each concept in the taxonomy and adds it to

a set called $string_name_of concepts.

Conditional Statements (If-else statements)

The if-else statement has the form

if (<condition>) <statement1> else <statement2>

The <condition> is a boolean expression. Both the <statement1> and <statement 2> need to be

included in the if-else statement.

If the else statement is to do nothing then the term none should be used. The else statement is

required to indicate the end of the if condition.

The condition must be encapsulated in parentheses. The statement blocks should not be

encapsulated with curly brackets.

Typically an if statement is going to be included in a for loop. As the for loop iterates through a

set of values the if statement is used to filter items out of the set based on the if condition. In a

fact set filter the where clause is used to perform the same function.

The following example shows an if statement not in a for loop

if ([@dei:AmendmentFlag] == true and count(list({covered

@dei:AmendmentDescription})) == 0))

 true

else

48 | XULE Language Syntax | October 2023

 false

This statement returns a true condition if the amendment flag in the default is set to true and

there is no amendment description anywhere in the filing. If either of these conditions are false

then the else statement returns false.

Setting Variables

Variables are defined in XULE by defining a variable using the $ symbol. Values are assigned to

the variable using a single equals “=”. To define a variable of “a” with a value of 10 the following

syntax is used:

$a = 10

This assigns a value of 10 to the variable $a.

All variables when defined and when used must have a $ sign to indicate that they are a

variable. The type of the variable is not defined. A variable will inherit the type of the value

assigned to it.

Order of Evaluation

The same variable can be defined multiple times. For example:

$a = 10;

$a = 20;

This assigns a value of 10 to the variable $a and subsequently assigns a value of 20 to a

second variable called $a. If you output the value of $a a value of 20 is returned.

Variables can be set in a number of ways and it may not be clear which value is assigned to a

variable with the same name. Variables can be defined by a constant, as an argument to a

function or direct assignment to a variable.

The following example explains. The following function called test() is defined:

function test($a)
$a = 30;

$a

This function will always return a value of 30.

A constant of $a is defined as part of the rules with a value of 40

constant $a = 40;

The test function is called and is passed a value of 20.

49 | XULE Language Syntax | October 2023

$a = test(20) + $a

The resulting value of $a will be 70. (30 +40)

Constants can be used in a function but the value will be superseded by the argument to the

function and this will be superseded by direct variable assignment in the function.

If the test function was defined as follows:

 function test($a)
$a

The resulting value of $a in test(20) + $a will be 60. (20 + 40)

If the test function was defined as follows:

 function test($b)
$a

The resulting value of $a in test(20) + $a will be 80. (40 + 40)

Collections (Sets, Lists and Dictionaries)

A collection is a generic term used to refer to sets, lists and dictionaries. Each of which facilitates

the collection of data. Xule supports sets, lists and dictionaries and operations between them.

1. A list is a group of items.

2. A set is a group of unique items.

3. A dictionary is a group of items with key names that must be unique.

Sets

A set is an unordered collection that cannot include duplicate items. Sets can be used to remove

duplicates and to test for membership in a set. Sets also allow the use of mathematical operations

like union, intersection, difference, and symmetric difference.

Any duplicate values assigned to a set are removed. If a fact set is assigned to a set with the

values covered then any values of the fact that are the same will be removed even if they

represent different element names and dimensions. For this reason groups of fact sets should

generally be assigned to a list and not a set.

50 | XULE Language Syntax | October 2023

Set and List Operators and Properties

Operation Operator Property Sets Syntax Result

Union of 2 sets + union() $A = set(a,b,c);
$B = set(c,d,e);

$A + $B
$A.union($B)

set(a,b,c,d,e)

Intersection of 2
sets

&,
intersect

intersect() $A = set(a,b,c);
$B = set(c,d,e);

$A & $B
A.intersect($B)

set(c)

Difference of 2
sets

- difference() $A = set(a,b,c);
$B = set(c,d,e);

$A -$ B set(a,b)
New set with elements
in A but not B

Symmetric
difference of 2 sets

^ symmetric-
difference()

$A = set(a,b,c);
$B = set(c,d,e);

$A^$B set(a,b,d,e)

Test if item is in
set

in $A = set(a,b,c); c in $A true

Test if set contains
item

 contains() $A = set(a,b,c); $A.contains(c) true

Test if item not in
set

not in $A = set(a,b,c); b not in$ A false

Get length of a set length() $A = set(a,b,c); $A.length 3

Convert list to a
set

 to-set() $A = list(a,b,c,b); $A.to-set set(a,b,c)

Convert set to a
list

 to-list() $A = set(a,b,c,d); $A.to-list list(a,b,c,d)

Convert a set to a
string

 join() $A = set(a,b,c); $A.join(',') “a,b,c,”

Test if a set is a
subset

<= is-subset() $A = set(a,b,c);
$B =
set(a,b,c,d,e);

$A.is-subset($B) true

Test if a set is a
superset

>= is-superset() $A = set(a,b,c);
$B =
set(a,b,c,d,e);

$B.is-
superset$(A)

true

Return value of an
index

[] index()5 $B =
list(a,b,c,d,e);

$B.index(1) “a”

Converts a set or a
list to a dictionary

 to-dict() $A=
set(list(‘AAxis’,’AM
ember’),
list(‘BAxis’,’BMem
ber’))

$A.to-dict dict(list(‘AAxis’,’AMem
ber’))

5 The index starts at 1 rather than 0.

51 | XULE Language Syntax | October 2023

Converts a list, set
or dictionary to a
json string format.

 to-json() $A.to-json

Converts a list,or
list of lists to a csv
format. The
separator is
optional. A comma
is the default if not
supplied. The csv
dialect is excel.

 to-
csv(separator
)

 $A.to-csv(“,”)

Sorts a list or set,
uses the argument
‘desc’ to sort
descending and
the ‘asc’ argument
to sort ascending.
If no parameter is
provided, then the
default sort is
ascending. If a set
is sorted it returns
a list. All sort
values must be the
same type. If string
and numbers are
mixed the sort is
done on string
values.

 sort() $A = list(a,c,b); $A.sort('desc')

$A.sort('asc')

list(c,b,a)

list(a,b,c)

Dictionaries

A dictionary is an unordered set of key: value pairs, with the requirement that the keys

are unique (within one dictionary). A dictionary can be created as follows:

Example
dict(list('AAxis','AMember'),list('BAxis','BMember'))

This uses the comma to separate the key from the value.

set(list('AAxis','AMember'), list('BAxis','BMember')).to-dict

This creates a dictionary using a list in a set and converting it to a dictionary

A dictionary cannot be created using curly brackets (as in python) as this is reserved for the fact

set definition.

52 | XULE Language Syntax | October 2023

Dictionary Operators and Properties

Operation Oper

ator

Property Dict Syntax Result

Convert a dictionary
to a string

 join() $A =
dict(list(‘AAxis’,’AMember’
), list(‘BAxis’,’BMember’));

$A.join(‘, ’, ‘=’) “AAxis=AMember ,
BAxis=BMember”

Return the number
of key-value pairs in
a dictionary.

 length() $A =
dict(list(‘AAxis’,’AMember’
, ‘BAxis’,’BMember’));

$A.length 2

Return value of a
key

[] $A =
dict(list(‘AAxis’,’AMember’
), list(‘BAxis’,’BMember’));

$A[‘AAxis’]

’AMember’

Return a set of the
key values in
dictionary, can add
value to get
matching keys

 keys() $A =
dict(list(‘AAxis’,’AMember’
), list(‘BAxis’,’BMember’));

$A.keys

set(‘AAxis’, ‘BAxis)

 keys(value) $A =
dict(list(‘AAxis’,’AMember’
, list(‘BAxis’,’BMember’));

$A.keys(’BMe
mber’)

set(‘BAxis’)

Test if key is in
dictionary

in has-key() $A
=dict(list(‘AAxis’,’AMembe
r’),list(‘BAxis’:’BMember’))
;

$A.has-
key(‘AAxis’)

true

Return a list of the
values from key-
value pairs

 values() $A
=dict(list(‘AAxis’,’AMembe
r’),
list(‘BAxis’,’BMember’));

$A.values set(’AMember’,’BMe
mber’)

Add dictionaries. If
the same key is
added, then the add
is not performed for
the matching key.

(V1.2.1)

+ union $A =
dict(list(‘AAxis’,’AMember’
), list(‘BAxis’,’BMember’));
$B =
dict(list(‘YAxis’,’YMember’
);

$A + $B
$A.union($B)

dict(list(‘AAxis’,’AMe
mber’),
list(‘BAxis’,’BMembe
r’),
list(‘YAxis’,’YMembe
r’));

Subtract
dictionaries. The
keys and values
must match. If not
then the left
dictionary is
maintained.

(V1.2.1)

- difference $A =
dict(list(‘AAxis’,’AMember’
), list(‘BAxis’,’BMember’));
$B =
dict(list(‘BAxis’,’BMember’
);

$A - $B
$A.difference(
$B)

dict(list(‘AAxis’,’AMe
mber’));

Subtract list of keys.
If keys don't match
the left dictionary is
maintained.

(V1.2.1)

- $A =
dict(list(‘AAxis’,’AMember’
), list(‘BAxis’,’BMember’));
$B = list(‘BAxis’);

$A - $B dict(list(‘AAxis’,’AMe
mber’));

53 | XULE Language Syntax | October 2023

Instance Objects (V1.2)

The following objects are available for an XBRL Instance.

Instance Object

XULE provides access to the default instance object. Additional instance documents can be

defined using the instance object by providing the url of the instance document.

$wsfs = instance('https://www.sec.gov/edgar/wsfs-20211231.htm')

This loads the wsfs instance into the XULE processor.

Fact set selection defaults to the default instance document. To select facts from an alternative

instance document the fact set selection criteria must reference the instance object.

{@instance = $wsfs}

This returns all the facts from the wsfs instance.

Instance Properties

Name Definition Examples

document-

location (V1.2)
Returns the document location of

the instance

$myInstance.document-location

Returns the URI of the instance

facts (V1.2) Returns the list of facts in an

instance. These will all be

unaligned. To get aligned facts, use

a factset such as

{@instance=$myInstance}. Note

that the returned value is a list and

not a set. Sets eliminate duplicates

by value, which would eliminate

different facts that happen to have

the same value. The facts property

returns all facts including

duplicates. This differs from the

fact filter which removes

duplicates.

$myInstance.facts

54 | XULE Language Syntax | October 2023

taxonomy

(V1.2)
Returns the taxonomy used by the

instance.

$myInstance.taxonomy

Returns the taxonomy of the instance

document.

Fact Object

The fact object is returned when defining a fact set. Each fact in the fact set has properties that

can be queried to get more information about the fact.

Fact Properties

In addition to the fact properties listed below the value properties6 for numerical, string and date

values can also be used on the fact object.

Name Definition Examples

aspects() The taxonomy defined and

built in dimensions

associated with a fact are

returned as a dictionary

where the aspect is the

dictionary key.

{@Revenues}.aspects}

Returns the aspects of the fact.
dictionary(period=2021-06-
30,unit=USD,entity=http://www.sec.gov/CIK=0
000831259,concept=us-gaap:Revenues)

concept() The concept of the fact value {@ where $fact.concept.name ==

Revenues}

cubes (V1.2) Returns a set of cube objects
that the fact is valid in.

{@Revenues}.cubes

Returns the cube objects that the fact is

valid in.

decimals() The decimal value of the fact

value

{@Revenues where $fact.decimals

== -6}

dimension(qname of
dimension)

Returns the member of the
fact for the specified
dimension

{@ where
$fact.dimension(dei:LegalEntityA
xis).name == ABC}

dimensions() Returns a dictionary of key
values pairs of dimension

{@Revenues}.dimensions()

6 Listed later in the document.

55 | XULE Language Syntax | October 2023

keys and member values.
These are returned as
concepts.

{@Revenues}.dimensions.keys.name
}
Returns the qnames of the dimensions on

the fact.

dimensions-explicit() Returns a dictionary of key
values pairs of explicit
dimension keys and member
values. These are returned as
concepts.

{@Revenues}.dimensions-
explicit()

{@Revenues}.dimensions-
explicit.values.name

Returns the qnames of the members on

the fact.

dimensions-typed() Returns a dictionary of key
values pairs of typed
dimension keys and member
values. These are returned as
concepts.

{@Revenues}.dimensions-typed()

entity() Returns the entity of the

fact. The properties schema

and id can be added as

additional properties.

{@ where $fact.entity.id =

‘00000000001’}

Returns all facts for entity 00000000001

footnotes (V1.2) Returns the footnote objects
associated with a fact.

{@Revenues}.footnotes

id Returns the id of the fact. If
the fact does not have an id,
none is returned.

{@Revenues}.id

instance (V1.2) Returns the instance object
that the fact is in.

{@Revenues}.instance

period() The period of the fact. The

period object supports

properties of start, end, days

{@Revenues where

$fact.period.days > 100 and

$fact.period.start > date(‘2014-

12-31’)}

unit() The unit of measure of the

fact.

{@ where $fact.unit ==

unit(xbrli:pure)}

Returns all facts that are pure.

Inline XBRL Properties

56 | XULE Language Syntax | October 2023

inline-is-hidden() Returns a boolean if the fact
is hidden in an inline
document.

{ where $fact.inline-is-hidden

== true}

Returns all hidden facts

inline-scale() Returns the scale of a fact in
an inline xbrl document.

{ where $fact.inline-scale == 6}

Returns all facts that have a scale of 6.

inline-format() Returns the format qname
associated with the fact in an
inline xbrl document.

{ where $fact.inline-format ==

ixt:datemonthdayyearen}

Returns all facts formatted with the

datemonthdayyearen format.

inline-display-value() Returns the display value
associated with the fact in an
inline xbrl document.

{ where $fact.inline-display-

value == ‘June 30, 2018’}

Returns all facts displayed as ‘June 30,

2018’.

inline-negated() Returns a boolean if the fact
has a sign in an inline
document.

{ where $fact.inline-negated ==

true}

Returns all facts that have the sign

attribute

inline-parent() (V1.2) Returns the parent facts of a
fact in an inline document as
a list.

{ where $fact.inline-

parent.length == 0}

Returns all facts that are not contained

within another fact such as a text block as

a list of facts.

inline-children() (V1.2) Returns a list of child facts of
a fact in an inline document

{ where $fact.inline-children.length

== 0}

Returns all facts that have no children.

inline-ancestors()

(V1.2)
Returns the ancestor facts of
a fact in an inline document
as a list.

{ where $fact.inline-

ancestors.length > 0}

Returns a list of facts that are ancestors of

a given fact. The list is ordered from

closest to furthest fact.

57 | XULE Language Syntax | October 2023

inline-descendants()

(V1.2)
Returns the descendant facts
of a fact in an inline
document as a list.

{ where $fact.inline-

descendants.length > 0}

Returns a list of facts that are descendants

of a given fact. The list is ordered from

closest to furthest fact.

Period Object

The period object is used to describe the period information associated with a fact value in the

instance. Every fact in XBRL has period information associated with it.

Period Properties

Name

Definition Examples

days() Returns the number of days in a

given duration period.

{@Revenues where

$fact.period.days > 100}

end() Returns the end date of a

durational period or the date of an

instant

{@Assets where $fact.period.end >

date(‘2014-12-31’)}

start() Returns the start date of a

durational period

{@Revenues where

$fact.period.start > “2014-12-

31”}

Unit Object

The unit object is used to describe the unit information associated with a fact value in the instance.

Every numerical fact will have unit information associated with it.

Unit Properties

Name Definition Examples

numerator() Returns the xbrl measure of the

numerator as a qname.If the unit

only has a measure and no division

the property returns the measure

 where $fact.unit.numerator ==

unit(iso4217:USD)

Tests if the numerator of the fact is USD

58 | XULE Language Syntax | October 2023

denominator() Returns the xbrl measure of the

denominator as a qname. If there is

no denominator an empty value is

returned.

where $fact.unit.denominator ==

“iso4217:USD”

Tests if the denominator of the fact is USD

id Returns the id of the unit used in

the instance.

$fact.unit.id

utr() Returns the symbol of the unit

from the units registry if a value

exists.

$fact.unit.utr(symbol)

Returns the symbol of the fact. Such as $

Footnote Object

Footnote Properties

Xule includes the following properties for a footnote object.

Name Definition Examples

arcrole Returns the arc-role of the

footnote.

footnote.arcrole

Could return

http://www.xbrl.org/2009/arcrole/fact-
explanatoryFact

content Returns the content of the

footnote. If it is a fact it returns a

fact object

footnote.content

fact Returns a set of the facts that the

footnote came from.

footnote.fact

lang Returns the language of the

footnote.

footnote.lang

role Returns the footnote-role of the

footnote.

footnote.role

59 | XULE Language Syntax | October 2023

Taxonomy Objects

Concept Object

Concept Equality

Concepts are compared based on qname. A concept used in two different dts are considered to

be the same concept for equality as the qnames are compared.

Concept Properties

Xule includes the following properties for a concept object.

Name Definition Examples

attribute(name) Returns the value of a custom

attribute based on the name

provided to the function.

$fact.concept.attribute(abc)

balance Returns the balance attribute of a
fact. This can be either debit or
credit or none.

$fact.concept.balance,

{@concept.balance = debit}

For Assets will return debit

base-type Returns the base XBRL type of a

concept. For concepts that use a

derived type, this will be the XBRL

type that the type is originally

derived from.

$fact.concept.base-type.name

For BasisOfAccount (which has a data type

of nonnum:textBlockItemType) will return

the type object for xbrli:stringItemType.

data-type Returns the type of a concept. $fact.concept.data-type.name

For Assets will return the type object for

xbrli:monetaryItemType.

enumerations Returns a set of enumerated values

allowed for the concept.

concept.data-type.enumerations

has-

enumerations

Returns a true of false if the

concept has enumerations in the

datatype

concept.data-type.has-

enumerations

is-abstract Returns true if the concept has an

abstract value of true. This

concept.is-abstract,

{@concept.is-abstract = false}

60 | XULE Language Syntax | October 2023

attribute can only be on the

concept object.

For Assets will return false

is-monetary Returns a boolean result if the

concept has that type.

$fact.concept.is-monetary

For Assets will return true

is-numeric Returns a boolean result if the

concept has that type.

$fact.concept.is-numeric

For Assets will return true

is-type(type) Returns a boolean result if the

concept has that type. The type is

provided as a qname.

$fact.concept.is-

type(xbrli:monetaryItemType)

For Assets will return true

label(label role,

language)

For a concept the label property

label(label role, language) can be

used to return one label associated

with a concept. The two

parameters are optional.If no

parameter is provided a label

object is returned. This property

will return a label object. To get to

the text, role and language of a

label use .text, .role, .lang,

respectively. The roles are

searched in an ordered list.

taxonomy().concept(Assets).label.

text

For Assets will return the string of Assets

all-labels(label
role, language)

Returns a set of all labels for the
concept. Label role and language
will filter the result to only return
labels that match the label role
and/or language specified. To
return all labels for a given
language, use none for the label
role.

taxonomy().concept(Assets).all-

labels

Will return all the labels associated with the

Assets concept

taxonomy().concept(Assets).all-

labels(none,'en')

Will return all the labels associated with the

Assets concept in english.

local-name Returns the local name of the
concept name.

$fact.concept.name.local-name

61 | XULE Language Syntax | October 2023

For Assets will return the string Assets

name Returns the qname of the concept.
This includes the local name and
URI.

$fact.concept.name

For Assets will return us-gaap:Assets

namespace-uri Returns the uri of the concept
name.

$fact.concept.name.namespace-uri

For Assets will return us-gaap

period-type Returns the period type, instant or

duration.

$fact.concept.period-type

For Assets will return instant

references(refer

ence-role)

Returns the references associated

with a concept for a given dts. If no

role is provided it defaults to the

first role that has a reference. The

roles checked are based on an

ordered list. The first role checked

is

taxonomy().concept(Assets).refere
nces("http://www.xbrl.org/2003/ro
le/presentationRef")
Returns a set of reference objects for
Assets based on the role provided or the
default role.

all-references() Returns a set of all references

associated with a concept.

(includes all roles)

taxonomy().concept(Assets).all-
references
Returns a set of all reference objects for
Assets

relationships Returns all relationships associated

with the concept.

source-

relationships

Returns the relationships where

the concept is the source.

substitution()

(V1.1)

Returns the substitution group of

the concept.

$fact.concept.substitution

For Assets will return xbrli:item

target-

relationships()

Returns the relationships where

the concept is the target.

Reference Object

The reference object has all the detailed parts of a given reference. These parts can be accessed

from the reference object using reference properties.

http://www.xbrl.org/2003/role/presentationRef
http://www.xbrl.org/2003/role/presentationRef

62 | XULE Language Syntax | October 2023

Reference Properties

Xule includes the following properties for a reference object.

Name Definition Examples

part-by-

name(part

qname)

Returns the reference part for a

reference based on part name.

reference.part-by-
name(cod:Topic).part-value

Returns the reference part value with a
qname of cod:Topic

parts() Returns a set of parts for a

reference

reference.parts

Returns all the reference parts associated to
a reference

role() Returns the reference role of a

reference.

reference.role.uri

Returns the reference role associated with a
reference such as
'http://fasb.org/srt/role/changeNote/chang
eNote'

concepts() Returns a set of concepts that are

linked to this reference in the

taxonomy

Parts Object

The following table details the properties associated with reference parts object:

Name Definition Examples

part-value() Returns the value associated with a

reference part

reference().parts.part-value

Returns the reference part value

name() Returns the qname of the

reference part.

reference().parts.name

Returns the reference part name

namespace-uri() Returns the namespace uri of the

reference part

reference().parts.namespace-uri

Returns the reference part namespace

63 | XULE Language Syntax | October 2023

local-name() Returns the local name of the

reference part

reference().parts.local-name

Returns the reference part local name

order() Returns the order of the part reference().parts.order

Reference Example

 $con = $us-gaap.concept(Assets);

for ($ref in

$con.references('http://www.xbrl.org/2003/role/presentationRef'))

 list("reference\n",

 for ($p in $ref.parts)

 $p.name.string + " - " + $p.part-value + "\n"

).join("")

This will return a list of all the presentation references for the concept Assets in the us gaap

taxonomy and adds some formatting

I.e. the first item.
reference

ref:Publisher - FASB

ref:Name - Accounting Standards Codification

codification-part:Topic - 942

codification-part:SubTopic - 210

ref:Section - S99

ref:Paragraph - 1

ref:Subparagraph - (SX 210.9-03(11))

codification-part:URI -

http://asc.fasb.org/extlink&oid=6876686&loc=d3e534808-122878

Note that the variable $us-gaap is set as a constant to the US GAAP entry point with references of:

constant $us-gaap = taxonomy('http://xbrl.fasb.org/us-gaap/2017/entire/us-gaap-entryPoint-all-2017-01-

31.xsd')

Label Object

A label object represents a dictionary of labels. A concept can have multiple labels and the label

object can be accessed to query those labels. Each individual label has the following properties.

Label Object Properties

Name Definition Examples

text() Text of a label label.text

64 | XULE Language Syntax | October 2023

lang() The language of a label label.lang

role() The role of the label label.role

concepts() Returns a set of concepts that

are linked to the label in the

taxonomy

If the label object is referenced in an output message and multiple values exist for the object

then the processor will return the standard label as the default. The documentation label will

only be returned if no other label is available.

Data Type Object

A type object represents a data type of a concept.

Type Object Properties

Name Definition Examples

name() QName of the type, for simple

types

concept.data-type.name

enumerations() Returns a set of allowed values

for the type

concept.data-type.enumerations

has_enumerations() Returns a boolean if the type is

restricted to a list of

enumerated values.

concept.data-
type.has_enumerations

Cube Object

The cube object reflects the cube concept in an extended link role, the associated axis, primary

concepts members, facts, defaults and domains.

Cube Properties

Xule includes the following properties for a cube object.

Name Definition Examples

65 | XULE Language Syntax | October 2023

cube-concept Returns the hypercube concept

of the cube

cube.cube-concept()

Returns the cube concept.

drs-role() Returns an extended link role

object of the role that the

specified cube is included in.

cube.drs-role().uri ==
“BalanceSheet”

Returns the cube in the balance sheet
extended link role.

dimensions() Returns the dimensions of a

cube as a dimension object.

cube.dimensions
Returns all the dimensions associated with
a given cube.

primary-concepts() Returns the primary concepts

of a cube as a set of primary

concepts.

cube.primary-concepts
Returns the primary concepts associated
with the cube.

members() Returns the member concepts

of a cube.

cube.members

Returns all the members on a specific cube.

closed() Returns a boolean result of true

if the cube is closed.

cube.closed

Returns true if the cube is closed.

facts() Returns all the facts associated

with a cube.

cube.facts

Returns all the facts in a given cube.

Dimension Object

The dimension object is different from the dimension concept. The dimension object is a

dimension on a cube in a given linkrole with members, domains and defaults.

Dimension Properties

Xule includes the following properties for a dimension object.

Name Definition Examples

dimension-type() Returns typed dimensions. dimension.dimension-type

Returns a string value of typed or explicit.

members() Returns the members on a

dimension

dimension.members

66 | XULE Language Syntax | October 2023

default() Returns the default of a given

dimension.

dimension.default

Returns the default domain of the
dimension object as a concept.

concept() Returns the concept for the

dimension.

dimension.concept
Returns the dimension concept.

domains() Returns the domains of a given

dimension

dimension.domains

useable-

members()

Returns the useable members

on a dimension.

dimension.useable-members

nonuseable-

members()

Returns the non-useable

members on a dimension.

dimension.non-useable-members

cube Return the cube object that the

dimension is on.

Members Object (Not Yet Implemented)

Name Definition Examples

concept() Returns the concept associated

with a member.

members.concept

dimensions() Returns the dimensions

associated with a member

members.dimensions

Taxonomy (DTS) Object

XULE automatically provides access to the taxonomy of the instance via the taxonomy() function.

A taxonomy is primarily used to find concepts and navigate relationships.

taxonomy().concept(Assets)

Return the Assets qname from the taxonomy of the instance.

Additional taxonomies can be accessed by providing the entry point documents to the taxonomy()

function.

67 | XULE Language Syntax | October 2023

 taxonomy('http://xbrl.fasb.org/us-gaap/2016/elts/us-gaap-2016-01-31.xsd')

This loads the US GAAP elements taxonomy.

Taxonomy Properties

Xule includes the following properties for a taxonomy or DTS object.

Name Definition Examples

concepts() Returns a set of concepts

representing every concept in a

taxonomy or a network. Can be

used on a taxonomy type or a

network type.

taxonomy().concepts

Returns all the concepts in the instance

taxonomy. (Whether they have values or

not, or are included in a tree or not.)

concept(QName) Returns the concept in a taxonomy

based on the concept qname.

taxonomy().concept(Assets)

Return the Assets qname from the

taxonomy of the instance.

cube(Concept or

QName,Role)

Returns a cube from the

taxonomy. The first argument is

the concept or qname of the cube

concept. The role is the drs-role.

taxonomy().cube(StatementTable,

ShareholdersEquity)

Returns the cube object

cubes() Returns all the cubes in the

taxonomy as a set.

taxonomy().cubes

Returns all the cubes in a taxonomy

effective-

weight(QName,

Qname)

Returns the effective weight

between two concepts aggregated

across all calculation networks.

Two qname parameters must be

passed.

taxonomy().effective-

weight(NetCashProvidedByUsedInOpe

ratingActivities,IncomeLossFromEq

uityMethodInvestments)

Return the effective weight between 2

concepts. This operates over all networks. If

the weight is not the same across networks

it returns 0. The values can be -1, 1 or 0.

http://xbrl.fasb.org/us-gaap/2016/elts/us-gaap-2016-01-31.xsd

68 | XULE Language Syntax | October 2023

effective-weight-

network(QName

,QName,Role)

Returns the effective weight

between two concepts in a given

calculation network. Returns a set

of lists containing the network and

effective weight between the 2

concepts. The third parameter

(role) is optional.

taxonomy().effective-weight-

network(NetCashProvidedByUsedInOp

eratingActivities,IncomeLossFromE

quityMethodInvestments)

Return the effective weight between 2

concepts by network. This example

operates over all networks.

taxonomy().effective-weight-

network(NetCashProvidedByUsedInOp

eratingActivities,IncomeLossFromE

quityMethodInvestments,

StatementCashFlow)

Return the effective weight between 2

concepts by network. This example

operates over all networks.

dimensions()
(V1.1)

Return all the dimensions in a

taxonomy that are dimension

objects. Dimensions are

determined based on the defined

hypercubes in the taxonomy, not

the datatype of the concept.

taxonomy().dimensions

Returns all the dimensions in a taxonomy

dimension(QNa
me) (V1.1)

Returns the dimension object
with a provided qname.

taxonomy().dimension(us-

gaap:CountryAxis).default()

Returns the default member of the us-

gaap:CountryAxis

dimensions-

explicit() (V1.1)
Return all the dimensions in a

taxonomy that are explicit

dimension objects.

taxonomy().dimensions-explicit

Returns all the explicit dimensions in a

taxonomy

dimensions-

typed() (V1.1)
Return all the dimensions in a

taxonomy that are typed

dimension objects.

taxonomy().dimensions-typed

69 | XULE Language Syntax | October 2023

Returns all the typed dimensions in a

taxonomy

dts-document-

locations

Returns the location of all

documents comprising the dts.

$us-gaap.dts-document-locations

Returns the uri of all dts documents

as a set.

entry-point-

namespace
Returns the namespace of the

entry point for the taxonomy

(DTS) used.

$us-gaap.entry-point-namespace

Returns the namespace of the us-

gaap taxonomy “http://xbrl.fasb.org/us-

gaap/2019”

entry-point() Returns the entry point url of

the taxonomy object

$us-gaap.entry-point

Returns the uri http://xbrl.fasb.org/us-

gaap/2016/elts/us-gaap-2016-01-31.xsd

networks(arcrole

, extended link

role)

Returns a set of network objects

from the taxonomy. Allows the

parameters of arc role and

extended link role. Both of the

parameters are optional. The

extended link role can use a short

name but should not be in quotes

taxonomy().networks()

Returns all the networks in the taxonomy.

taxonomy().networks(parent-child)

Returns all the parent-child networks in the

taxonomy.

taxonomy().networks(parent-

child,‘http://www.abc.com/role/Co

nsolidatedBalanceSheets’)

Returns all the parent-child network for the

consolidated Balance Sheet in the

taxonomy.

taxonomy().networks(parent-

child,ConsolidatedBalanceSheets)

Returns all the parent-child network for the

consolidated Balance Sheet in the

http://xbrl.fasb.org/us-gaap/2016/elts/us-gaap-2016-01-31.xsd
http://xbrl.fasb.org/us-gaap/2016/elts/us-gaap-2016-01-31.xsd
http://xbrl.fasb.org/us-gaap/2016/elts/us-gaap-2016-01-31.xsd
http://xbrl.fasb.org/us-gaap/2016/elts/us-gaap-2016-01-31.xsd
http://www.abc.com/role/ConsolidatedBalanceSheets
http://www.abc.com/role/ConsolidatedBalanceSheets
http://www.abc.com/role/ConsolidatedBalanceSheets

70 | XULE Language Syntax | October 2023

taxonomy. This uses the short name (No

quotes)

namespaces()

(V1.1)
Return a set of namespace uris

that are defined in the taxonomy.

taxonomy().namespaces

Returns the namespaces that are defined in

the taxonomy.

roles() (V1.2) Return a set of roles associated

with the dts.

taxonomy().roles

arcroles() (V1.2) Return a set of arc roles associated

with the dts.

taxonomy().arcroles

Network Set Object

XULE provides access to the networks comprising a taxonomy of the instance via the networks()

function. Networks are all the networks in the taxonomy. Specific networks can be returned by

specifying the arcrole and or extended link role. Both are optional.

taxonomy().networks(parent-child,‘http://www.abc.com/role/ConsolidatedBalanceSheets’)

Returns the parent-child network for the consolidated Balance Sheet in the taxonomy.

Network Object

The network object represents a single network in the taxonomy., identified by its extended link

role, arc-role, arc element name, and extended link name.

Network Properties

Xule includes the following properties for a Network() object.

Name Definition Examples

arcrole() Returns the arc-role of the

network.

Network().arcrole

Could return summation-item, parent-child

etc.

concept-names() Returns a set of qnames

representing every concept in a

network.

network().concept-names

http://www.abc.com/role/ConsolidatedBalanceSheets

71 | XULE Language Syntax | October 2023

 Returns all the qnames in a network.

(Whether they have values or not, or are

included in a tree or not.)

concepts() Returns a set of every concept in a

network including target and

source

network().concepts

Returns all the concepts in a network.

source-

concepts()

Returns the source concepts from

a network.

network().source-concepts

target-

concepts()

Returns the target concepts in a

network

network().target-concepts

relationships() Returns a set of relationships that

can be looped to get the

relationship object

network().relationships

Returns all the relationships in a given

network.

role() Returns the role of the network.

The role as 3 properties of uri,

description and tree (linkbase)

applicable to. (Is the extended link

role)

network.role.uri

Returns the uri of the role

network().role.description

Returns the description of the role

network().role.used-on

Returns a set of the trees the role is used

on.

roots() Returns a set of concepts

representing the root concepts of

a network

network().roots

Returns the root concepts of the defined

network

Role Object

Role Properties

72 | XULE Language Syntax | October 2023

Name Definition Examples

uri() Returns the uri of a role. network.role.uri

Returns the uri of the role

network.arcrole.uri

Returns the uri of the arcrole

description() Returns the description of the role. network.role.description

Returns the description of the role

network.arcrole.description

Returns the description of the arcrole

used-on() Returns the qnames of the

extended link element names the

role is used on as a set of strings.

network.role.used-on

Returns a set of the extended link element

names the role is used on.

network.arcrole.used-on

Returns a set the qnames of arc element

the role is used on.

cycles() Indicates if the arcrole allows

cycles.

Relationship Object

This object is used to define a relationship between two concepts. It is not used for a relationship

between a concept and a resource.

The relationship object is usually obtained by using the navigate function in xule. However it can

also be obtained by looping through the relationships object.

Relationship Properties

Xule includes the following properties for a Relationship() object.

73 | XULE Language Syntax | October 2023

Name Definition Examples

source() The source concept of the
relationship

relationship().source

source-name() The QName of the source
concept of the relationship

relationship().source-name

target() The target concept of the
relationship

relationship().target

target-name() The QName of the target
concept of the relationship

relationship().target-name

order() The value of the order attribute
on the relationship

relationship().order

weight() The value of the weight
attribute on the relationship

relationship().weight

preferred-label() The value of the preferred Label
attribute on the relationship

relationship().preferred-label

role() The extended link role of the
network

relationship().role

arcrole() The arcrole of the network relationship().arcrole

arcrole-uri() The arcrole uri of the network relationship().arcrole-uri

arcrole-description() The description of the arcrole of
the network

relationship().arcrole-

description

link-name() The QName of the extended link
element

relationship().link-name

arc-name() The QName of the arc element relationship().arc-name

network() The network relationship().network

Properties and Functions

Properties and functions can be used interchangeably, either as a property of an object or as

functions that can be passed a parameter of a value or an object.

74 | XULE Language Syntax | October 2023

Numerical Properties and Functions

Name Definition Examples

abs() Returns the absolute value of a

numerical value. Can be used on an

integer, float, decimal and fact type.

Property: {@Assets}.abs

Function: abs({@Assets})

Returns the value of assets as an absolute

value.

int() Returns the value as an integer. The

int function will always round down.

It effectively cuts off any decimal

places.

Property: 10.98.int

Returns a value of 10.

log10() Returns the log of a number. Can be
used on an integer, float, and
decimal type.

Property: {@Assets}.log10

Function: log10({@Assets})

Returns the log10 value of assets.

power() Returns the power of a number. Can
be used on an integer, float, and
decimal type. If you want to
determine the square a number it is
used as 4.power(2).

Property: 4.power(2).

Returns a value of 16.

signum() Returns a value of -1 if the number is

negative and a value of positive 1 if

positive. If the value is zero it returns

0. Can be used on an integer, float,

decimal and fact type.

Property: {@Assets}.signum

Function: signum({@Assets})

trunc(number,
places)

Truncates the decimal places on a

number. Places defaults to zero if

not provided.

Property: {@Assets}.trunc(2)

Function: trunc({@Assets},2)

truncates the value of assets to two

decimal places

round(number,p
laces)

Rounds a number to the decimal

places indicated. Rounds to the

nearest even.

Property: {@Assets}.round(2)

Function: round({@Assets},2)

Rounds the value of assets to two decimal

places

75 | XULE Language Syntax | October 2023

mod(numerator,
divisor)

Returns the mod of a numerator and

a divisor.

Property:

{@Assets}.mod({@Liabilities})

Function:

mod({@Assets},{@Liabilities})

random(places)

(V1.2)
Returns a random number between

0 and 1. Places defaults to 4 if not

provided.

Function: random()

Returns random number between 0 and 1.

String Functions and Properties

Name Definition Examples

clark() Returns a qname as a string in clark

notation.

$US-GAAP-

2020.concept(Assets).clark

Returns a string of {http://fasb.org/us-
gaap/2020-01-31}Assets

contains() Returns a boolean result if the

provided value is contained in the

provided

string.about:blank#blocked/*

'http://some/role/for/cashflow/'

.lower-case.contains("cashflow")

Returns a boolean of true

index-of() The index-of(string,string) returns an

integer of the position of the first

instance of a given string in another

string.

“Hello Mr. Stains”.index-

of(’llo’) = 3

Returns a value of 3

inline-

transform()

(V1.2)

The inline-transform(transform,type)

is a property of a string. The

function will transform a string value

to a valid defined data type using the

inline transformation registry. The

first property is the qname of the

transform and the second optional

parameter is the datatype. If not

provided it will default to a string.

'1,234,567.89'.inline-

transform(ix4:num-dot-decimal)

Returns a string value of 1234567.89

'1,234,567.89'.inline-

transform(ix4:num-dot-decimal,

'decimal')

Returns a decimal value of 1234567.89

about:blank
http://some/role/for/cashflow/%E2%80%9D.lower-case.contains(%22cashflow%22)
http://some/role/for/cashflow/%E2%80%9D.lower-case.contains(%22cashflow%22)
http://some/role/for/cashflow/%E2%80%9D.lower-case.contains(%22cashflow%22)
http://some/role/for/cashflow/%E2%80%9D.lower-case.contains(%22cashflow%22)

76 | XULE Language Syntax | October 2023

inline-

transform('1,234,567.89',ix4:num

-dot-decimal, 'decimal')

Returns a decimal value of 1234567.89

last-index-of() The last-index-of(string,int) returns

an integer of the position of the last

instance of a given string in another

string.

'Hello Mr Stains'.last-index-

of(’o’) = 5

Returns a value of 5

length() Returns the length as an integer of a
string. Can also be used on a set, list
or a dictionary to return the number
of items in the collection.

'Hello Mr. Stains'.length() =
16

Returns a value of 16

lower-case() Returns a string as lowercase

characters.

'http://some/role/for/cashflow/'

.lower-case()

Returns the string in lowercase

number() Converts a string to a number. If the

string has a period it is converted to

a decimal. If it has inf then it is

converted to a floating number

otherwise the string is converted to

an integer

'3.4'.number = 3.4

Returns a decimal number value of 3.4

regex-

match(pattern)

(V1.1)

Returns a dictionary of information

about the regular expression match.

The dictionary contains:

end: The character position in the

string where the match ended.

groups:

match:The text of the string that

matched the regular expression

pattern.

Match-count: The number of

matches

start: The character position in the

string where the match started.

'abcdefg'.regex-match('de+')

Returns a dictionary of:

dict('end': 6, 'groups': list(), 'match': 'de',

'match-count': 1, 'start': 4)

http://some/role/for/cashflow/%E2%80%9D.lower-case()
http://some/role/for/cashflow/%E2%80%9D.lower-case()

77 | XULE Language Syntax | October 2023

If there is no match, the 'match'

value is none and the 'match-count'

is zero.

regex-match-

all(pattern)

(V1.1)

Same as regex-match except that the

"-all" will return a list where a match

is made and then the pattern is

applied to the rest of the string and

the next match is made.

'abcdefg'.regex-match-all('de+')

Returns a dictionary of:

list(dict('end': 6, 'groups': [], 'match': 'de',

'match-count': 1, 'start': 4))

regex-match-

string(pattern,

optional group

number) (V1.1)

Returns the string that matches the

regular expression pattern.

If there is no match, the value is

none. The second parameter allows

the number of the group to be

returned. Groups are defined in the

pattern using parenthesis.

'abcdefg'.regex-match-

string('de+')

Returns the string 'de'

'abcdefgabcdefg'.regex-match-

string('(c)(d)', 2)

Returns 'd' because the '(d)' is the second

group.

regex-match-

string-

all(pattern,

optional group

number) (V1.1)

Same as regex-match-string except

that the "-all" will return a list where

a match is made and then the

pattern is applied to the rest of the

string and the next match is made.

'abcdefggabcdefg'.regex-match-
string-all('[cf]([dg])')

Returns list(cd, fg, cd, fg).

'abcdefggabcdefg'.regex-match-

string-all('[cf]([dg])', 1)

Returns list(d, g, d, g)

split() Split a string into a list based on a

defined delimiter character. If an

empty string is used as the

separator, the returned list will

contain 1 item with the entire string

in it.

'Hello Mr Stains'.split(’ ’) =

list('Hello','Mr','Stains')

starts-with() Returns a value of true or false if the

string starts with a given string.

“Value of Derivatives”.starts-

with(‘Value’) = true

78 | XULE Language Syntax | October 2023

Returns a value of true

ends-with() Returns a value of true or false if the

string ends with a given string.

“Value of Derivatives”.ends-

with(‘ves’)

Returns a value of true

string() Converts an integer, float or decimal

to a string

3.string = '3'

Returns a string value of “3”

substring() The substring(int beginIndex, int

endIndex) returns a new string that

is a substring of this string. The

substring begins at the specified

beginIndex and extends to the

character at index endIndex. Thus

the length of the substring is

endIndex-beginIndex + 1. If the last

parameter is left off it continues to

the end of the string.

'Hello Mr.

Stains'.substring(1,5)

Returns the string of “Hello”

to-qname() Converts a string to a qname. The

string can include a prefix which is

resolved with the namespace

declarations in the rule set. If the

namespace cannot be resolved, the

property will raise an error.

'Abc'.to-qname

Returns a qname with local name ‘abc’

and the default namespace defined in the

rule set.

'us-gaap:Assets'.to-qname

Returns a qname with the namespace

defined in the rule set for prefix ‘us-gaap’

and local name ‘Assets’.

trim()

(V1.1)
Trim removes white space from

either the left side or rights side or

both sides of the string. The property

has optional string values of “left”,

“right”, or “both”. If no value is

provided the property defaults to

both.

(Added V1.1)

'Abc '.trim = 'Abc'

Returns a string without spaces at end.

'Abc '.trim('right') = ‘Abc'

Returns a string without spaces at end.

79 | XULE Language Syntax | October 2023

upper-case() Returns a string as uppercase

characters.

'cashflow'.upper-case()

Returns the string of “CASHFLOW”

Generic Properties

Name Definition Examples

is-fact Returns true or false if a value

represents a fact object.

{@Assets}.is-fact

Returns true.

4.is-fact

Returns false.

is-nil Returns true or false if a fact value is

nil.

{@Assets}.is-nil

Returns true if the value is nil

Date Properties and Functions

Name Definition Examples

contains(duratio

n)

Is a property of a duration used to

check if one duration period is

contained within another duration

period. If the values overlap a value

of false is returned. Two matching

durations will return tre using

contains.

duration('2024-01-01','2025-01-

01').contains(duration('2024-03-

01','2024-06-01'))

Returns boolean value of true

date(string) Pass this function a point in time

string in the format yyyy-mm-dd to

produce an instant date that can be

compared to a fact. NOTE that a date

fact is already a date type and should

not be converted to a date.

date('2017-12-31')

OR

'2017-12-31'.date

Converts the string to a date.

day() Returns the day (number) from a

given date.

day(date('2017-12-31'))

80 | XULE Language Syntax | October 2023

Returns a value of 31.

days() Is a property of a period. Property: {@period.days = 90}

Returns all facts that are 90 days in length

duration(start-

date, end-date))

Pass this function a start and end

date in the format yyyy-mm-dd to

produce a duration period that can

be compared to a fact.

Function: {@period =

duration('2016-01-01', '2016-12-

31')}

Converts two string dates to a duration for

comparing or filtering a fact.

forever() Generates a period equal to the

forever period

Function: {@period = forever }

Returns all periods that have a period of

forever.

month() Returns the month (number) from a

given date.

Function: month(date('2017-12-31'))

Returns a value of 12.

is-month-day Checks that the value of the

element with a datatype of

gMonthDayItemType is valid.

Property:

{@CurrentFiscalYearEndDate where

$fact.is-month-day != true}

Identifies if the value of

CurrentFiscalYearEndDate is

valid.

is-leap-year Identifies if a year(number) is a leap

year

Property: year(date(“2017-12-

31”)).is-leap-year

time-span() Allows a span of time to be defined

for example time-span(“P90D”). This

uses the XML duration format to

return the number of days in the

period. This can also be used as a

property of any duration.

function:$document_period_end_date

+ (time-span("P4D"))

Adds 4 days to the value of document

period end date.

81 | XULE Language Syntax | October 2023

year() Returns the year (number) from a

fact or the year from a given date.

given date.

Property: {where $fact.end.year ==

'2017'}

Function: year(date('2017-12-31'))

The function and property returns a value

of 2017.

Aggregation Functions

Aggregation functions only work on sets and lists. The values returned from a fact set need to

be expressed as a list or set before the aggregation functions below can be used. These

functions can also be represented as a property of a list or set. I.e. list(1,2,3).avg

Name Definition Examples

avg(set|list) Will return the average of values

in a set or a list.

Function: avg(list({@PlanAssets

@@DefinedBenefitPlansDisclosures

DefinedBenefitPlansAxis = *}))

This will return the average value of plan

assets across all plans.

count(set|list) Will return the count of values in a

set or a list.

Function : count(set(a,b,c,d,e))

This will return a value of 4

max(set|list) Returns the maximum value of a set

or a list

Function: max(list({@concept =

PlanAssets

@@DefinedBenefitPlansDisclosures

DefinedBenefitPlansAxis = *}))

This will return the largest value of the

Plan Assets from all plans.

min(set|list) Returns the minimum value in a set

or list.

Function: min(list({@concept =

PlanAssets

@@DefinedBenefitPlansDisclosures

DefinedBenefitPlansAxis = *}))

This will return the lowest value of the

Plan Assets from all plans.

82 | XULE Language Syntax | October 2023

sum(set|list) Returns the sum of a set or a list, this

operates on any numerical and string

type. Strings are concatenated.

Function: sum(list({@concept =

PlanAssets

@@DefinedBenefitPlansDisclosures

DefinedBenefitPlansAxis = *}))

This will sum the value of the Plan Assets

for every Plan member.

stdev(set|list) Returns the standard deviation of a

set or a list.

Function: stdev(list({@concept =

PlanAssets

@@DefinedBenefitPlansDisclosures

DefinedBenefitPlansAxis = *}))

This will return the stdev of the Plan

Assets for every Plan member.

prod(set|list) Returns the product of a set or a list. Function: prod(list({@concept =

PlanAssets

@@DefinedBenefitPlansDisclosures

DefinedBenefitPlansAxis = *}))

This will return the product of Plan Assets

for every Plan member.

all(set|list) Returns true if all values in a list or a

set are true

Function:

all(list(true,false,false,false)

)

Property:

list(true,false,false,false)).al

l
This will return the value of false.

any(set|list) Returns true if any value is true in

a list or a set.

Function:

any(list(true,false,false,false)

)

This will return the value of true.

first() Returns the first value found in a

list

Function: first(list(1,2,3,4))

This will return the value of 1.

last() Will return the last value in a list. Function: last(list(1,2,3,4))

83 | XULE Language Syntax | October 2023

This will return the value of 4.

Statistical Functions

Name Definition Examples

corr(Y, X) correlation coefficient

regr_r2(Y, X) square of the correlation

coefficient

Existence Functions

Name Definition Examples

exists() Tests for the existence of a fact,

object. If any fact exists then a

value of true is returned. Exists is

applicable for checking the

existence of facts. Exists will

return a value of true when a

none value is returned in a set or

list. If a fact has a value of nil in

the instance then exists returns

true.

exists({@Assets})

Tests if any fact value is reported for

assets and returns true or false

exists(list())

Returns a value of true.

missing() Tests for the existence of a fact. If

a fact does not exist then a value

of true is returned.

missing({covered @Assets})

Tests if any fact value is not reported for

assets. Covered needs to be used with

missing if determining if the fact exists in

the document at all.

missing(list())

Returns a value of false.

first-value Takes a list of expressions and

returns the first expression that

has a value. If no value is

returned then no value is returned

first-value({@Assets},{@CurrentAssets})

84 | XULE Language Syntax | October 2023

and the iteration is skipped. This

is the same as a fact set that does

not return any facts. I.e it is

unbound. The function calculates

values until it gets one that is not

none.

Returns the value of CurrentAssets if

Assets is not present. If neither value is

present then the iteration is skipped.

first-value-or-

none (V1.2)
This does the same thing as first-

value(), except if there are no

values in the arguments, then it

returns a 'none' value instead of

skipping the iteration.

first-value-or-

none({@Assets},{@CurrentAssets})

Returns the value of CurrentAssets if

Assets is not present. If neither value is

present then a none value is returned.

Unit Functions

Name Definition Examples

unit() Pass this function the unit URI and

local name to define a comparable

unit with the instance

{@unit = unit(iso4217:USD)}

Returns all fact values reported in USD

convert-

unit(fact,

resulting_unit)

Converts the value of the fact to the

resulting unit and returns the result.

Only works in those cases where the

conversion rate is constant between

the unit of the fact and the resulting

unit. The function requires that the

datatype of the concept is the same

as the datatype defining the unit in

the unit registry. Conversions cannot

be done where the unit of the fact

does not have the same datatype as

the resulting member. I.e. a value of

3 feet in length with a datatype of

lengthItemType cannot be converted

to a unit with a datatype of

areaItemType.

convert-unit($fact, unit(uri:m))

85 | XULE Language Syntax | October 2023

DTS Functions

Name Definition Examples

qname(namesp

ace, local-

name)

Creates a valid qname by

providing the namespace-uri and

localname as parameters.

qname($ext_namespace,’FairValueI

nputsLevel2AndLevel3Member’)

Defines a qname based on the extension

namespace

taxonomy() Creates a taxonomy object based

on the taxonomy entry point. If no

parameter is passed the DTS of

the current instance is used.

$us-gaap =

taxonomy('http://xbrl.fasb.org/u

s-gaap/2016/elts/us-gaap-2016-

01-31.xsd')

Returns the US-GAAP taxonomy

taxonomy()

Returns the DTS of the current instance

entry-point-

namespace(tax

onomy)

Returns the namespace of the

entry point for the taxonomy

(DTS) used. Takes the taxonomy

object as a parameter.

entry-point-namespace($us-gaap)

Returns the namespace of the us-

gaap taxonomy

“http://xbrl.fasb.org/us-gaap/2019”

entry-point() Returns the entry point uri of the

taxonomy object passed as a

parameter

entry-point($us-gaap)

Returns the uri http://xbrl.fasb.org/us-

gaap/2016/elts/us-gaap-2016-01-31.xsd

dts-document-

locations

Returns the location of all

documents comprising the dts.

dts-document-locations($us-gaap)

Returns the uri of all dts documents

as a set.

Range Function

Name Definition Examples

http://xbrl.fasb.org/us-gaap/2016/elts/us-gaap-2016-01-31.xsd
http://xbrl.fasb.org/us-gaap/2016/elts/us-gaap-2016-01-31.xsd
http://xbrl.fasb.org/us-gaap/2016/elts/us-gaap-2016-01-31.xsd
http://xbrl.fasb.org/us-gaap/2016/elts/us-gaap-2016-01-31.xsd
http://xbrl.fasb.org/us-gaap/2016/elts/us-gaap-2016-01-31.xsd
http://xbrl.fasb.org/us-gaap/2016/elts/us-gaap-2016-01-31.xsd

86 | XULE Language Syntax | October 2023

range(start,

stop, step)
The range function generates a list

of integer numbers between the

given start integer to the stop

integer, which is generally used to

iterate through a Loop. The range

function accepts an integer and

returns a list of integers. A single

argument represents the stop

integer, two arguments are the

start and stop integers. The

default start integer is 1. The

default step integer is 1 unless

specified otherwise.

range(5)

Returns:

list(1,2,3,4,5)

range(4,10)

Returns:

list(4, 5, 6, 7, 8, 9, 10)

range(4,10,2)

Returns:

list(4, 6, 8, 10)

Use in a loop with list $path:

for $i in range($path.length)

 $path[$i]

Data Import and Transformation Functions

Name Definition Examples

csv-data() csv-data takes 4 arguments. The

first 2 are required.

1. file-url: (required) Location and

name of the file

2. has headers: (required) either

true or false. If it is true, the first line

is ignored. Defaults to false.

3. list of types: (optional). If supplied

it must have a type for each column.

If omitted the columns will be strings.

Possible values are string, date,

decimal, float, int, boolean, qname,

list().

4. as dictionary - optional If supplied

and true, the result for the row will be

a dictionary using the column names

from the header as the key.

The function returns a list of rows.

The row is either a list or a dictionary

csv-

data('https://xbrl.us/dqc_06_dat

e_bounds.csv',true, list(

'string', 'string', 'string'))

Defines a csv file as a source of data.

csv-

data('https://xbrl.us/trans.csv'

, true,

list('string',list(ix4:num-dot-

decimal, 'decimal'),

list(ix4:date-day-month-year,

'date'), list(ix4:date-day-

monthname-year-fr, 'date'))

)

Defines a csv format for the following:
name,amount,date,date2

Mark,"1,234,567.89",06/05/2020,05-juin-1900

87 | XULE Language Syntax | October 2023

(if the 4th argument is supplied and

true).

Limitations:

● If the list of types is supplied,

no row can have more

columns than the length of

the list of types.

● If headers are in the file and

returning as a dictionary, no

row can have more columns

than the header row.

Defining types

Types are defined as a list. I.e.

list(‘string’, ‘date’, ‘date’). In some

cases the format of the csv is

formatted. In these cases XBRL

transforms can be used to transform

the data to the appropriate type. The

transform and type are provided as a

list i.e. list(ix4:date-day-month-year,

'date'),

Phillip,"9,876.54",09/01/2019,01-septembre-1901

excel-data()

(V1.2)
Excel data takes 5 arguments. The

first arg is required

1. file-url: (required) Location

and name of the file

2. Range: (optional) This can

be one of the following:

a. name of sheet,

b. named range,

c. cell range i.e

sheet1!A1:D3

If not defined it defaults to

the active sheet.

3. Has headers: (optional)

Boolean value where the

default is false.

4. list of types: (optional). If

supplied it must have a type

for each column. If omitted

the columns will be strings.

Possible values are string,

date, decimal, float, int,

boolean, qname, list().

excel-

data('https://xbrl.us/excel-

file.xls',

'sheet1!A1:D3',true,list('string

',list(ix4:num-dot-decimal,

'decimal'), list(ix4:date-day-

month-year, 'date'),

list(ix4:date-day-monthname-

year-fr, 'date'))

)

Defines a an excel file with the following

in sheet1:
name,amount,date,date2

Mark,"1,234,567.89",06/05/2020,05-juin-1900

Phillip,"9,876.54",09/01/2019,01-septembre-1901

https://xbrl.us/excel-file.xls
https://xbrl.us/excel-file.xls

88 | XULE Language Syntax | October 2023

5. as dictionary: (optional) If

supplied and true, the result

for the row will be a

dictionary using the column

names from the header as

the key.

json-data() json-data takes 1 parameter

which is the url to the json file.

The function returns a dictionary

which matches the structure of

the json file.

json-data('https://xbrl.us/json-

file.json')

Defines a json file as a source of data.

xml-data-flat()

(V1.2)
xml-data-flat takes.takes 3 to 5

arguments. The first 3 are

required:

1. file url

2. xpath expression to find the

nodes you want

3. list of xpath expressions to

return the field you want. The

node will be the starting point for

the xpath

4. list of return types. There

should be 1 for each field in the

3rd argument. This is optional. if

not supplied, the result will be a

string

5. a dictionary of namespace

mappings. The key is the prefix

and the value is the namespace.

This is optional. The namespaces

declared in the rule file are always

available. Default namespaces are

not supported. Any namespace

must have a prefix.

xml-data-

flat('http://www.xbrl.org/lrr/lr

r.xml','lrr:arcroles/lrr:arcrole

', list('lrr:roleURI',

'lrr:status'))

Returns a list of role URI and status.

xml-data-

flat('http://www.xbrl.org/lrr/lr

r.xml', '/lrr:lrr',

list('@version', 'lrr:status'),

list('decimal', 'string'))

The version number is converted to a

decimal

xml-data-

flat('https://www.sec.gov/Archiv

es/edgar/data/1099219/0001628280

23018062/information_table.xml',

'j:infoTable',

list('j:nameOfIssuer',

'j:titleOfClass',

'j:cusip','j:value'),

list('string','string','string',

'decimal'),

dict(list('j','http://www.sec.go

http://www.sec.gov/edgar/document/thirteenf/informationtable

89 | XULE Language Syntax | October 2023

v/edgar/document/thirteenf/infor

mationtable')))

Example showing namespace map

Information Functions

Name Definition Examples

rule-name() rule-name returns the name of the

current executing rule. The rule

name is the generated rule name

composed of the rule-name-prefix

and rule-name-separator and the

specific rule name if there is a

rule-name prefix, otherwise it is

just the specific rule name. It does

not include a rule-suffix, as this

cannot be determined during rule

processing.

When evaluating constants, the

rule-name() returns none.

output abc

 rule-name()

Returns:

 'abc'

alignment()

(V1.2)
Returns a dictionary of the

alignment for a fact. Can only be

used as a function.

$alignment = alignment()

Returns a dictionary with keys

of entity, unit, period,

concept, dimension and the

associated values for the keys

_type() Returns the object type of a xule

object.

Custom Functions

Often a user may write a number of rules that repeat the same logic. Rather than duplicating the

rule logic XULE supports defining custom functions that can be defined once and used by many

rules. Functions allow the user to pass values to the function and return the results of the

http://www.sec.gov/edgar/document/thirteenf/informationtable
http://www.sec.gov/edgar/document/thirteenf/informationtable

90 | XULE Language Syntax | October 2023

function. Xule functions return the value of the body of the function. In addition, any variables or

tags defined within the function are available to use in a message. Functions are defined with

the keyword ‘function’.

function add_two_numbers($a , $b)

 $a + $b

This function will add two variables passed to it and return the result.

 assert sum_less_zero satisfied

$sum_assets_liabilities = add_two_numbers({@Assets} , {@Liabilities});

$sum_assets_liabilities < 0

message

“The value of {$sum_assets_liabilities.concept} with a value of {$sum_assets_liabilities} is less

than zero. Please enter a positive amount”

This rule uses the function to add Assets and Liabilities and check the sum is less than 0.

Alignment of facts is maintained when using a function.

Recursive functions are not supported by the XULE processor implementation.

Functions do not have to have arguments. In the example below the function defines a set.

function non_neg_concepts()

set(Assets, Liabilities)

Recognising Qnames

The grammar parser automatically identifies qnames. However because a period “.” is used to

identify a property the parser cannot always accurately differentiate a qname from a property. If

the qname contains a period then a backslash should be used to indicate that a period

comprises the qname. For example aapl:FixedRateRangefrom0.875to4.300 contains two

periods. To identify this as a qname if written in XULE a backslash “\” is used to identify the

period as a qname. I.e. aapl:FixedRateRangefrom0\.875to4\.300

Defining Namespaces

In order to determine which namespace an element is in prefixes can be associated with concepts.

The prefixes are defined in the rule file in the following manner.

/* DECLARE NAMESPACES USED IN THE RULES */

namespace iso4217 = http://www.xbrl.org/2003/iso4217

91 | XULE Language Syntax | October 2023

namespace us-types = http://fasb.org/us-types/2017-01-31

namespace exch = http://xbrl.sec.gov/exch/2017-01-31

namespace http://fasb.org/us-gaap/2017-01-31

namespace currency = http://xbrl.sec.gov/currency/2017-01-31

namespace dei = http://xbrl.sec.gov/dei/2014-01-31

namespace invest = http://xbrl.sec.gov/invest/2013-01-31

namespace nonum = http://www.xbrl.org/dtr/type/non-numeric

namespace num = http://www.xbrl.org/dtr/type/numeric

The default namespace is declared by not including a prefix. The namespaces only need to be

defined once and not in every file.

Namespace Group (V1.2)

In some cases it is unknown what the namespace of an element will be exactly. Most sets of

XULE expressions expect a given taxonomy, but this is not always assured. In many cases one

filer will file with the 2022 US-GAAP taxonomy and the 2022 SEC DEI taxonomy. In some cases

filers will use the 2022 US-GAAP taxonomy and the 2021 SEC DEI taxonomy. Historically this

issue has been addressed by using element local-names to avoid the mismatch of concepts

using a prior version or later version of the taxonomy. Namespace groups averts this issue by

using qname prefixes that can represent a group of namespaces.

The following shows two dei namespaces defined as follows:

namespace dei = http://xbrl.sec.gov/dei/2021

namespace dei-2022 = http://xbrl.sec.gov/dei/2022

A namespace group can be defined such as dei-all (Or any name) . This is then associated with any

namespace containing the text dei.

namespace-group dei-all = list('dei')

To define a rule that selects all the fact values for the dei element DocumentPeriodEndDate in the filing

the following filter can be used:

 {@concept = dei-all:DocumentPeriodEndDate}

As opposed to the following:

 {@concept.local-name = 'DocumentPeriodEndDate'}

http://xbrl.sec.gov/dei/2021
http://xbrl.sec.gov/dei/2022

92 | XULE Language Syntax | October 2023

Using namespace group eliminates the risk of duplicate element name clashes across different

taxonomies. It also means that single rulesets can be defined that can be used across updated releases

of a taxonomy which has an incremented namespace.

A namespace group can only be used in a factset expression.

Assertion Types

Xule requires different assertion types to be defined. The assertion types supported by XULE

are as follows:

Assertion Type Description

assert This will perform a value assertion. This requires a boolean result and will
produce output dependent on the assertion

output This will return the results without a severity

Satisfied Types

A rule assertion type can be satisfied or unsatisfied. If not defined the default is satisfied. This

indicates if a boolean result of true will return results. The satisfied keyword returns an assertion

if the result is true. The key word is used after the rule name. In this case abc.0001.

assert abc.0001 satisfied

$severity = “error”;

{@concept.is-numeric = true}#nonnegitem < 0

message

“The value of {$nonnegitem.concept} with a value of {$nonnegitem} is less than zero. Please

enter a positive amount”

severity

$severity

This will return a message if the fact is less than zero.

The unsatisfied keyword is the opposite of satisfied. The following rule will return a result if the

fact is greater than zero.

assert abc.0001 unsatisfied

$severity = “error”;

{@concept.is-numeric = true}#negativeitem <= 0

message

“The value of {$negativeitem.concept} with a value of {$negativeitem} is greater than zero.

Please enter a negative amount.”

93 | XULE Language Syntax | October 2023

severity

$severity

This will return a message if the fact is greater than zero.

In the second case a value of 100 will be returned as false as it is greater than zero. Because

the rule is defined as unsatisfied then only facts which fail the expression will be returned.

These keywords cannot be used on an output assertion. If no severity is provided then this

defaults to “error” for assertions. Output defaults to a severity of info.

Rule Output

Output Attributes

The output of XULE allows for additional attributes to be associated with the output of a rule. This

is useful for classifying rule types for applications using XULE. In addition this can allow for

refinement on severity levels or additional details that you would otherwise have to extract from a

message string.

Rule output attributes are assigned as part of a set of rules, different attributes cannot be defined

on a rule by rule basis. Output attributes are defined using the output-attribute qualifier in the file.

See example below.

output-attribute concept

This defines an attribute called concept. This can then be defined at the bottom of the rule.

Xule includes predefined output attributes called message, rule-suffix, rule-focus and severity that

do not have to be defined as an output attribute. The severity attribute will default to error if not

defined. Severity has the following enumerated values: error, warning, ok.7

The format for a rule that checks for any negative items in an instance with a concept would be

as follows:

assert abc.0001 satisfied

If {@ where $fact < -1000000}#nonnegitem

$severity = “error”;

True

else If {@ where $fact < 0}#nonnegitem

$severity = “warning”;

True

else

7 For consistency with the XBRL formula specification.

94 | XULE Language Syntax | October 2023

false

message

“The value of {$nonnegitem.concept} with a value of {$nonnegitem} is less than zero. Please

enter a positive amount”

concept

$nonnegitem.concept.name

severity

$severity

rule-focus $nonnegitem

Passing Variables to Rule Output

Variables can be used in an output string. Variables are indicated by using a $ sign enclosed in

curly brackets to indicate that it is a variable. For example:

“The value of {$nonnegitem.concept} with a value of {$nonnegitem} is less than zero. Please

enter a positive amount”

Any expression defined in the rule can be expressed in the output returned from the rule. In

addition properties of a variable can also be returned using the dot notation. In the above

message to return the local name of a concept would be represented as follows:

“The value of {$nonnegitem.concept.name.local-name} with a value of {$nonnegitem} is less

than zero. Please enter a positive amount”

Tagging Values for use in Output

In many cases the result of a fact set needs to be passed to the rule output. Rather than forcing

every fact set or property to be defined as a variable these items can be tagged and then used in

the output. This means the output can access a variable defined in the rule or a tag defined in the

rule. An item can be tagged using the # symbol. In the example the tag #nonnegitem is used to

tag those items that are less than zero. The # is used immediately after the fact set. The tag also

has properties that can be referenced in the message. Below the element name and balance type

of the item can be displayed in the message by representing the properties of the tag.

assert abc.0001 satisfied

{@ where $fact < 0}#nonnegitem

message

“The value of {$nonnegitem.concept} with a balance type of {$nonnegitem.concept.balance} is

less than zero. Please enter a positive amount”

Note that tag names cannot contain a period.

95 | XULE Language Syntax | October 2023

Fact Properties and Rule Focus

The output from xule will also send the properties of a fact object or concept in the message.

This will normally default to the first item in a list if it is more than one. The xule syntax allows

you to control how these properties are returned by providing a hint to the processor. Within the

grammar you can define the object for which the properties are returned. This is done using the

key word 'rule-focus' as a result name. The rule focus must evaluate to a fact or a concept. For

Example:

 assert a satisfied

$liab = @Liabilities;

$e = @Equity;

 ($liab + $e) < 0

 message

 "Liabilities with value {$liab} plus Equity with value {$e} is less than zero"

rule-focus $e

If rule-focus is not present, then the first evaluated fact will be used for the properties returned.

So if the example did not have rule-focus, the properties returned would have been Liabilities

instead of Other Assets.

The rule focus can also return a set of properties if the rule-focus is passed a list.

Rule Value

The value of the rule or output expression is recorded in a variable called $rule-value. If a rule

evaluates to a boolean of true, then the value of $rule-value will be recorded as “true”. $rule-

value can be used in the message to indicate the result of an output or the result of running the

rule.

For example the result of an output value can be reported using rule-value.

output add-two-numbers

 @assets#a + @liabilities#b

message

 "{$a} + {$b} = {$rule-value}"

Labels in Messages

In many cases labels of elements need to be returned in output from the rule to make them easier

to read. To access the label of a concept the label object which is associated with a concept is

used. So if the rule is checking if a value is negative the concept can be returned and the

associated label in the dts can also be returned.

96 | XULE Language Syntax | October 2023

$Assets = {@concept = Assets where $fact < 0}

This rule will return all Assets where the value is less than zero.

The output can then be expressed using the label as follows:

 message

“The value of the concept {$Assets.concept.label.text} is less than zero”

Special Characters in Messages

When using quotes in a message the rule has to have the quotes escaped. This is because a

message is represented as a string encapsulated with quotes. To escape a quote or other control

character such as a tab or a return the backslash is used.

Character Defined as

Quote \”

tab \t

return \n

Curly Bracket \{

Rule Name Prefix

In many cases rule names have a common prefix naming convention. Xule allows a common

prefix to be defined for all rules below the rule name prefix declaration. In the example below the

keyword ‘rule-name-prefix’ is used to set a standard prefix for all rules below the declaration.

rule-name-prefix my_rules

assert a_rule satisfied

 $liab = @Liabilities;

$e = @Equity;

 ($liab + $e) < 0

message

 "Liabilities with value {$liab} plus Equity with value {$e} is less than zero"

rule-focus $e

When the results of the rule are returned the rule will be referenced as my_rules.a_rule.

97 | XULE Language Syntax | October 2023

Between the rule prefix and the rule name a period is added to distinguish the prefix from the rule.

The period is the default separator. This however can be changed by using the keyword ‘rule-
name-separator’

A rule name prefix cannot be defined as a variable.

Rule Name Separator
The rule name separator declaration is used to change the separator added by rule-name-prefix

and rule-suffix. To change the separator from the default period to a colon the following

declaration is made:

rule-name-separator :

Changes the rule name separator for a period to a colon. From the example above the rule will be

referenced as my_rules:a_rule.

Rule Suffix

The ‘rule-suffix' keyword can be used to add a suffix to a rule. Unlike the ‘rule-name-prefix’

keyword, the rule-suffix applies to a specific rule. The rule-suffix can be passed as a variable

which allows rule names to be defined at run-time. This means a single rule can be defined that

can generate rule results with different rule numbers depending on the input or processing within

the rule. The example below shows this.

rule-name-prefix my_rules

assert a_rule satisfied

$e = @Equity;

if $e < 0

$suffix = “equity_less_zero”

else

$suffix = “equity_greater_equal_zero”

$liab = @Liabilities;

 ($liab + $e) < 0

message

 "Liabilities with value {$liab} plus Equity with value {$e} is less than zero"

rule-focus $e

rule-suffix $suffix

When the results of the rule are returned the rule will be referenced as my_rules.a_rule.equity_less_zero

or my_rules.a_rule.equity_greater_equal_zero depending on the data in the XBRL instance.

Between the rule suffix and the rule name the default period is added to distinguish the suffix from

the rule. This can be changed using the rule name separator declaration.

98 | XULE Language Syntax | October 2023

Predefined Output Attributes

Xule includes output attributes that allow XULE to output rule information to a file. The attribute

file-content defines the content that will be output. This has to be a string and can be

derived from the to-json, to-csv or string properties. The content cannot contain XULE objects.

The output attribute file-location defines where the file content is written to. Multiple rules

can be written to the same file.

Iterations and Alignments

The XULE processing model can run multiple times for a given rule, in some cases returning a

result as a message or returning no message. The rule starts with a single iteration, when a fact

set is encountered iterations are added for each value of the fact set. Iterations are also created

when a for loop is encountered. An iteration is created for each loop of the for expression. For

example if the value of assets is tested to determine that it is less than zero. If assets are reported

for 3 periods the rule will test that assets are less than zero for all three periods. If assets are also

reported in multiple currencies each of these currency disclosures will be tested by the same rule.

To do this the processor looks at the number of times a value appears in the instance and

executes the rule for each occurrence of the fact. If the fact does not exist in the instance then no

iterations are created for each fact and the rule will not produce a message.

For example the following says print a message if BelowMarketLeaseAcquired doesn't exist in

the instance.

output exits_iteration

If (exists ({@BelowMarketLeaseAcquired}))

“This item exists and this string is output for every occurrence of the fact.”

else

“If BelowMarketLeaseAcquired does not exist no iteration occurred and this string will never be

reported.”

The problem with this rule is that the else condition is never reported because there is no iteration

to create the message. Because the message is created for each occurrence of the fact and the

fact does not exist then no message is output. The fact set is aligned and matches based on

alignment and if no alignment matches no iteration of the rule occurs. If the alignment is removed

from the fact set then a single iteration will occur. This is because when a rule executes a single

iteration will occur if no fact sets or for loops are encountered. The alignment is removed from a

fact set using the covered keyword. The following output will produce a message

output exists_iteration

If (exists ({covered @BelowMarketLeaseAcquired}))

“This item exists and this string is output for every occurrence of the fact.”

else

99 | XULE Language Syntax | October 2023

“If the BelowMarketLeaseAcquired does not exist a single iteration occurs because the covered gets a

true result and this string will reported once.”

Multiple Fact Sets

In the above examples the iteration impacted a single fact set. In some cases multiple fact sets

are compared. For example to expand the above example:

output exists_and_missing

if missing({@BelowMarketLeaseAcquired}) AND exists({@Assets})

 "Below Market leases are not in the filing but assets are. This message is reported for the

number of times an asset value appears in the filing.”

else

 "Below market leases are in the filing. This will appear for the number of occurrences of below

market leases."

In the case above the number of iterations can vary. If below market leases is missing the number

of iterations will be the same as the number of occurrences as assets. This is because it answers

the question, how many cases of assets are present where below market leases is not. If below

market leases are present for a given alignment ,such as 2017, then a false value is returned and

the else condition occurs for the number of occurrences of below market leases. The existence

of the assets is not even checked because the first condition is false and the entire statement will

be false. The XULE processor implements the Lazy AND to reduce processing time. The number

of iterations can vary if the rule was written as follows:

output exists_and_missing

if exists({@Assets}) AND missing({@BelowMarketLeaseAcquired})

 "Below Market leases are not in the filing but assets are. This message is reported for the

number of times an asset value appears in the filing.”

else

 "Assets values are not in the filing . This message will appear for the number of occurences of

assets which in this case is 0 which means there will be zero iterations."

In the case above if no assets are present there will be zero iterations, whereas in the first case

there would be iterations that reflect the number of times that below market leases appeared.

Depending on how many error message the user wants returned they need to consider the

sequence of their logic statements.

100 | XULE Language Syntax | October 2023

Lists, Sets and Iterations

The use of a list or a set creates an unbound iteration. The iteration allows processing to

happen in the set. For example a list can be used to check the existence of a fact as follows:

output exits_iteration

If (list({@BelowMarketLeaseAcquired}).length > 0)

“This item exists and this string is output for every occurrence of the fact.”

else

“If BelowMarketLeaseAcquired does not exist the unbound list iteration will be used and this string will

be reported.”

This has the advantage over the exists that the covered does not have to be used. The covered

has the disadvantage that all the facts are taken out of alignment and the existence function will

return true when you may be processing a specific alignment where that fact does not actually

exist.

FACT Iterations versus FOR iterations

Facts defined in a list with multiple facts in different alignments will create a list for each fact

alignment. For example the following list:

output Assets_in_list

list(@concept = Assets)

If there are three values for Assets this will create three iterations of the list with the value

assets. If iterations are created using a for statement in a list these iterations are contained

within the list to produce separate values within the list.

output For_Values_in_List

list(for $x in list(1,2,3)

 $x)

This will create a list with a value of list(1,2,3). It will not create 3 lists with values of

list(1), list(2), list(3)

SKIP in a list or Set

A skip appearing in a list or set will not cause the iteration to be skipped. A SKIP in a list or set

is treated as an empty list. The following output will result in an empty list.

output skip_in_list

list(skip)

Any items in the list will be retained and the skip is ignored.

output skip_in_list

101 | XULE Language Syntax | October 2023

list(1,2,3,skip)

The above output will produce list(1,2,3)

Impact of Syntax on Performance

The way rules are written can have a performance impact and in many cases a rule can execute

faster or slower depending on the amount of work that needs to be done by the processor. When

writing rules in XULE the following should be considered:

● If a value is a constant, then it should be defined as a constant. This allows software to

load these first and use them for the execution of every rule without having to recompute

them and load into memory each time a rule is run. On server versions of a XULE

processor the performance should be vastly improved.

● Secondly, avoid for loops if possible. For loops require heavy processing because of the

need to track alignments for all variables for each loop. In addition, it can be hard to predict

how many loops may be specific to a given filing. Instead of using a loop try to use the

filter operator instead as this is much more efficient. In addition use built in properties and

functions that are more efficient than a for loop in XULE, for example the join property.

● Reuse constants across many rules where possible.

● Define your own functions so that variables that have already been calculated can be

cached and reused by the processor.

● Try and avoid a where clause in a fact set when a filter can be used instead. I.e

{@Assets} is more efficient than {@ where $fact.concept == Assets}

● Consider the use of lazy AND. The sooner you can find a false for an AND the more

efficient the processor can be.

102 | XULE Language Syntax | October 2023

Appendix 1 - XULE Operators

Operators

Operators are used between variables and values in XULE. For example the where filter supports

standard comparison operators. The operators defined below are consistent across the entire

xule syntax.

Boolean Operators Description

< Less than

> Greater than

>= Greater than or equal

<= Less than or equal

== Equivalent to. Can be used on a set or a list

!= Not equivalent to. Can be used on a set or list

and Logical AND. This is lazy

or Logical OR This is lazy

in Evaluates if an item is in a set.

Numeric Operators

+ Addition of numbers, strings, lists and sets.

- Subtraction, unary

* Multiplication

/ Division

<+> Addition that will occur if both left and right side present

<+ Addition will only occur if left side is present.

+> Addition will only occur if right side is present.

<-> Subtraction that will only occur if both values are present on
either side of the subtraction.

<- Subtraction will only occur if left side is present.

103 | XULE Language Syntax | October 2023

-> Subtraction will only occur if right side is present.

power() Power. This is a property and not the operator ^ as this is used
for symmetric difference.

Set Operators

+ Union of 2 sets

&, intersect Intersection of 2 sets

- Difference of 2 sets

<= Test if a set is a subset

>= Test if a set is a superset

[] Return value of an index

Duration Operators

> Test if a time duration is after another time duration. Returns
false if there is an overlap.

├──┤ ┣┫
If the end and start date meet this is considered after.

├──╊┫

< Test if a time duration is before another time duration. Returns
false if there is an overlap.

== Test if two durations are the same duration. The start and end
times must match.

!= Test if two durations are not the same duration.

Order of Precedence

() Parenthesis

Tagging

[] Index

. Property expression

+, - Unary, union

* , / Multiplication and Division

104 | XULE Language Syntax | October 2023

+, - Addition and subtraction

&, intersect Set intersections

^ Symmetric Difference

>,<,>=,<=,in,not in,
== , !=

Comparison Operators

not

and

or

105 | XULE Language Syntax | October 2023

Appendix 2

Versions

The following features are available in either version 1.1 or 1.2 or planned in version 1.3.

No Version Feature Name Detail

1. 1.2 Footnotes of a Fact Added support for returning the footnotes of a fact. A
footnote property was added that allows specific
footnotes to be returned. I.e. $fact.footnote(role)

2. 1.3 Date Casting For business users it would be more straightforward if
they can directly write @period.start='2016-01-01'
without the date constructor. @period.start and
@period.end always returns an instant, so an
automatic type cast is possible as it is the case for
units, e.g. @unit=iso417:USD

3. 1.1 Parameters Allows passing parameters to the XULE processor that
match the constants in the XULE syntax. For example:
a person running the rule passes the parameter called
user with a value such as user=jblow. The message
can then output who ran the rule as the constant is
defined constant $user

4. 1.1 Regular Expressions Added a string matching function to match regular
expressions. Returns a match object and a simple
version that returns the match.

match(”regex pattern”, “string”) Returns true or false.

5. 1.1 Properties of none The string value of a none value returns an empty
string.

6. 1.1 Taxonomy
Namespaces

Added a property to taxonomy() that returns the URI of
the namespaces in the filing as a set.

7. 1.1 Default Handling When filtering a fact set if a member is defined as the
default member then all facts with the default will be
returned. Previously if a member was identified that
was the default then no values would be returned.

8. 1.2 Namespace Groups Added namespace groups to allow the definition of a
prefix that references multiple namespaces. This
allows comparison when the namespace version of the

106 | XULE Language Syntax | October 2023

XBRL file being processed is not known in advance. I.e.
us-gaap 2022 vs us-gaap 2021

9 1.2 Ability to define and
create instance
documents

Added support to define a fact and output as an
instance document. This support is provided as a
separate plugin called XINCE. Xule has added
additional functions to support this. Specifically the
alignment function.

10 1.2.1 Ability to create a csv
or json file from an
output rule.

Added support to define a file and its content as part of
the rule. This means you can query the taxonomy and
output it in csv or json format of the users choice.

11 1.2 Ability to open multiple
instance documents
and include them in
alignment.

Added support to open multiple instance documents.
These are included in the factset.

12 1.2 Added properties to
support XINCE and
XODEL and general
requirements.

Added the following properties:

1. excel-data
2. xml-data-flat
3. first-value-or-none
4. inline-transform
5. random
6. roles
7. arc-roles
8. inline-parent
9. inline-children
10. inline-ancestors
11. inline-descendants
12. Instance : Instance of a fact
13. Footnotes: on a fact
14. cubes : Cubes a fact is applicable to
15. taxonomy : Taxonomy used by an instance
16. facts : facts in an instance
17. document location
18. to-csv

107 | XULE Language Syntax | October 2023

Upcoming Versions

Where possible we have identified specific requirements (highlighted in grey within the

document) that have not been implemented in the reference implementation. These will be

implemented in upcoming versions.

In addition there is additional functionality we know needs to be addressed in future that is not

yet documented in this document (As it conflicts with the current implementation) or is not

implemented in the reference implementation. These requirements are summarized below:

No Version Feature Name Detail

1. 1.3 Include/Import Currently all xule files are compiled from a given
directory. However, the user should be able to include
specific XULE files from another file location using an
include statement. Should also have the ability to
import compiled XULE files such as a compiled group
of XULE functions.

2 1.3 Namespace
declaration as an
expression

Namespaces are currently declared as a string and
cannot be an expression. However in many cases
these need to be evaluated at run time as the
namespaces in an instance may not be known in
advance. Namespaces should be able to be defined as
an expression. This is a major change and will mean
old xule would not be able to be run on a new
processor implementing this functionality.

3 1.3 Update return types
from a navigate

The return types from the navigate expression should
be expressions. This means that the properties cannot
be accessed directly without some form of lookup. For
example in the return options to get the source name, a
return option of source-name is used rather than
relationship.source.name.

4 1.3 Rule Link Add a standard output attribute called rule link that
links to the documentation of the actual rule. Such as
https://xbrl.us/data-rule/dqc_0001/. This would allow
users to easily navigate to the rule definition page in
XULE enabled editors.

5 1.3 Run rules in streaming
mode

Ability to define rules to run in streaming mode.

6 1.3 Namespace Groups Currently namespace groups are a convenience for
matching a concept name in a factset, but it doesn't

https://xbrl.us/data-rule/dqc_0001/

108 | XULE Language Syntax | October 2023

affect how the results of the factset are aligned.

For example, you are working with us gaap data that
comes from 2 different versions: us gaap 2022 and us
gaap 2021. If you have a factset {@}, Revenues for
2022 would not be in the same alignment as Revenues
for 2021. This is because the alignment uses the full
namespace uri.

This proposal is to use the namespace group name
instead of the actual namespace uri for defining
alignment. So if a namespace group is declared as:

namespace-group = 'us-gaap'

then a factset:

{@}

would align Revenues regardless of the version of the
us gaap taxonomy because they would have the same
namespace group prefix.

If a concept can be matched to more than one
namespace group, an error would be raised. This would
be

7 1.3 Concept Traits Add a property of a concept called traits that are
defined using the traits relationship defined in the link
role registry. The traits property returns all traits
associated with a concept using the traits-concept arc-
role and the class-subclass arcrole

8 1.3 Extensible
Enumerations

Return the extensible enumeration values of a concept.

109 | XULE Language Syntax | October 2023

Appendix 3

Examples

DQC.US.0001.51
/** Define the base taxonomy as a constant**/

constant $us-gaap = taxonomy('http://xbrl.fasb.org/us-gaap/2016/elts/us-gaap-

2016-01-31.xsd')

/** Determine the members on the axis in the taxonomy using the definition

tree **/

constant $member_USGAAP_fair_value = navigate dimensions dimension-member

descendants from FairValueByFairValueHierarchyLevelAxis taxonomy $us-gaap

returns set (target-name))

/** Define a function to identify a concept as an extension**/

constant $extension_ns = first(filter taxonomy().concepts where

is_extension($item)).name.namespace-uri

function is_extension($test_extension)

$test_extension not in $us-gaap.concepts

assert dqc.us.0001.51 satisfied

/** Define allowable extensions with the qname function**/

$allowable_extensions =

set(qname($extension_ns,‘FairValueInputsLevel1AndLevel2Member’),

qname($extension_ns,’FairValueInputsLevel2AndLevel3Member’),

qname($extension_ns,’InvestmentsNetAssetValueMember’) ;

/** Union the sets**/

$allowed_members = $allowable_extensions + $member_USGAAP_fair_value;

/** Evaluate if facts exists with the unallowable members **/

exists ({@FairValueByFairValueHierarchyLevelAxis = * as $FV where

($allowed_members not in $FV#member)}#fact)

message

“The concept {$fact.concept.name.local-name} with a value of {$fact} is dimensionally qualified with the

FairValueByFairValueHierarchyLevelAxis and the unallowable member {$member.local-name}. The filer

should use members from the US GAAP taxonomy that are children of the

FairValueByFairValueHierarchyLevelAxis axis or the allowable extensions of :

{$allowable_extensions.join(', ')}.

The properties of the fact for {$fact.concept.name.local-name} are:

http://xbrl.fasb.org/us-gaap/2016/elts/us-gaap-2016-01-31.xsd
http://xbrl.fasb.org/us-gaap/2016/elts/us-gaap-2016-01-31.xsd

110 | XULE Language Syntax | October 2023

Period: {$fact.period}

Dimensions: {$fact.dimensions.join(', ','=')}

Unit: {$fact.unit}”

severity

error

111 | XULE Language Syntax | October 2023

DQC.US.0004.16

This rule tests that the value reported for the element Assets equals the value reported for the

element Liabilities and Equity. The rule allows a tolerance for rounding between the values 2

based on the scale of the values. For example, if the values are reported in millions, the rounding

tolerance would be $2 million.

/** Define a function that works out the tolerance between 2 values with different decimals. The decimal

tolerance factor for this rule takes the value of 2**/

function Tolerance_For_Decimals($left, $right, $decimal_tolerance_factor)

$tolerance1 = if ($left.decimals < $right.decimals)

$left.decimals

 else $right.decimals;

$tolerance2 = if ($tolerance1 == inf)

0

 else (10^(-1 * $tolerance1)) * $decimal_tolerance_factor;

if (abs(round($left,$tolerance1) - round($right,$tolerance1)) >

$tolerance2)

 true

else

 false

assert DQC.US.0004.16 satisfied

$Assets = {@Assets};

$LiabilitiesAndStockholdersEquity = {@LiabilitiesAndStockholdersEquity};

Tolerance_For_Decimals($Assets, $LiabilitiesAndStockholdersEquity, 2)

message

“{$Assets.concept.label.text} with a value of {$Assets} is not equal to the total of

{$LiabilitiesAndStockholdersEquity.concept.label.text} with a value of

{$LiabilitiesAndStockholdersEquity}. These values should be equal.

The properties of this {$Assets.concept} fact are:

Period :{$Assets.period}

Dimensions : {$Assets.dimensions.join(‘= ’,’’}

Unit : {$Assets.unit}
Rule Version : {$ruleVersion}”;

severity

error

http://xbrl.us/DQC_0004

112 | XULE Language Syntax | October 2023

DQC.US.0044.6834

assert dqc.us.0044.6834 satisfied

$Accrual_items_in_cashflows =

navigate summation-item descendants from

list(NetCashProvidedByUsedInFinancingActivities,

NetCashProvidedByUsedInFinancingActivitiesContinuingOperations) where

$relationship.target.name in $Accrual_Items;

$Accrual_fact = {@concept in $Accrual_items_in_cashflows};

$Accrual_fact != 0

message

"The concept {$accrual_fact.concept} with a value of {$accrual_fact} is an accrual-based item in the US

GAAP taxonomy that is included in the sum of cash provided by (used in) financing activities in the cash

flows of the extension taxonomy.

The properties of this {$accrual_fact.concept} fact are:

Period :{$accrual_fact.period}

Dimensions : {$accrual_fact.dimensions.join(‘= ’,’’}

Unit : {$accrual_fact.unit}

Rule Version : {$ruleVersion}"

severity

error

/** This rule uses a constant to represent the accrual items in the taxonomy. These are determined as

follows **/

constant $Accrual_Items =

(navigate summation-item descendants from

list(ComprehensiveIncomeNetOfTax, NetIncomeLoss,

NetIncomeLossAvailableToCommonStockholdersBasic,

NetIncomeLossAvailableToCommonStockholdersDiluted,

IncomeLossIncludingPortionAttributableToNoncontrollingInterest,

IncomeLossAttributableToParent,

NetIncomeLossAllocatedToGeneralPartners,

NetIncomeLossAllocatedToLimitedPartners,

StockholdersEquityPeriodIncreaseDecrease,

https://xbrl.us/DQC_0044

113 | XULE Language Syntax | October 2023

PartnersCapitalAccountPeriodIncreaseDecrease) taxonomy $us-gaap where

$relationship.target.is-monetary == true returns set (target-name))

+

(navigate parent-child descendants from list((IncomeStatementAbstract,

StatementOfIncomeAndComprehensiveIncomeAbstract,

StatementOfStockholdersEquityAbstract,

StatementOfPartnersCapitalAbstract) taxonomy $us-gaap where

$relationship.target.is-monetary == true returns set (target-name))

constant $us-gaap = taxonomy('http://xbrl.fasb.org/us-gaap/2016/elts/us-gaap-

2016-01-31.xsd')

http://xbrl.fasb.org/us-gaap/2016/elts/us-gaap-2016-01-31.xsd
http://xbrl.fasb.org/us-gaap/2016/elts/us-gaap-2016-01-31.xsd

114 | XULE Language Syntax | October 2023

DQC.US.0045.6835

assert dqc.us.0045.6835 satisfied

/** This rule identifies elements in the investing section of the cash flow calculation that are operating

items. It uses a function to build a list of misplaced items by navigating the calculation tree of the filing

dts and the calculation of the US-GAAP taxonomy.**/

$misplaced_concept =

compare_baseCalc_to_extensionCalc(NetCashProvidedByUsedInOperatingActivitiesC

ontinuingOperations,

NetCashProvidedByUsedInInvestingActivitiesContinuingOperations);

for $x in $misplaced_concept true

message

"The concept {$x} appears in the investing cash flows of the company's cash flow statement. {$x} is an

operating item and it is expected that this item would only appear in the cash flow generated from

operating activities. Please review the calculations defined for the cash flow statement to determine

that the correct element has been used for this item.

Rule Element Id:6835

Rule Version: 5.0.0"

severity

error

function compare_baseCalc_to_extensionCalc($baseConcept, $extensionConcept)

$extensionNames = navigate summation-item descendants from

($extensionConcept);

navigate summation-item descendants from ($baseConcept) taxonomy $us-gaap

where $relationship.target in $extensionNames and not

($relationship.target.name in $cash_flow_exceptions)

constant $cash_flow_exceptions =

set(ProceedsFromDepositsWithOtherInstitutions, InterestPaidCapitalized,

ProceedsFromFederalHomeLoanBankAdvances,

PaymentsForFederalHomeLoanBankAdvances,

ProceedsFromPaymentsForTradingSecurities,

PaymentsForDepositsWithOtherInstitutions,

ProceedsFromPaymentsForInSecuritiesSoldUnderAgreementsToRepurchase,

IncreaseDecreaseInFederalFundsPurchasedAndSecuritiesSoldUnderAgreementsToRepu

https://xbrl.us/DQC_0045

115 | XULE Language Syntax | October 2023

rchaseNet, IncreaseDecreaseInRestrictedCash,

IncreaseDecreaseOfRestrictedInvestments)

constant $us-gaap = taxonomy('http://xbrl.fasb.org/us-gaap/2016/elts/us-gaap-

2016-01-31.xsd')

http://xbrl.fasb.org/us-gaap/2016/elts/us-gaap-2016-01-31.xsd
http://xbrl.fasb.org/us-gaap/2016/elts/us-gaap-2016-01-31.xsd

116 | XULE Language Syntax | October 2023

DQC.US.0046.6839

assert DQC.US.0046.6839 satisfied

EffectOfExchangeRateOnCashAndCashEquivalents

in

navigate summation-item descendants

from (NetCashProvidedByUsedInContinuingOperations) returns set (target-name)

message

"The element NetCashProvidedByUsedInContinuingOperations (Net Cash Provided by (Used in)

Continuing Operations) does not include EffectOfExchangeRateOnCashAndCashEquivalents (Effect of

Exchange Rate on Cash and Cash Equivalents) as defined in the US GAAP Taxonomy.

 However, in the companies extension taxonomy NetCashProvidedByUsedInContinuingOperations

includes EffectOfExchangeRateOnCashAndCashEquivalents as a summation-child. Consider using either

CashAndCashEquivalentsPeriodIncreaseDecrease or CashPeriodIncreaseDecrease, instead of

NetCashProvidedByUsedInContinuingOperations.\n EffectOfExchangeRateOnCashAndCashEquivalents

{NetCashProvidedByUsedInContinuingOperations}}

Rule Element Id:6839

Rule Version: 5.0.0"

severity

error

https://xbrl.us/DQC_0046

117 | XULE Language Syntax | October 2023

DQC.US.0047.7481

assert dqc.us.0047.7481 satisfied

for ($cashOperating in

set(NetCashProvidedByUsedInOperatingActivitiesContinuingOperations,NetCashPro

videdByUsedInOperatingActivities))

$misplaced_concept = navigate summation-item descendants from

($cashOperating)

 /** tests if the element has no balance type **/

 where $relationship.target.balance == none

 /** Excludes as this is a known exception **/

and $relationship.target.name !=

NetCashProvidedByUsedInOperatingActivitiesContinuingOperations

 /** Does not flag an error if the element is an extension element **/

 and is_base($relationship.target);

 for $x in $misplaced_concept true

message

"In the company's extension taxonomy the concept {taxonomy().concept($cashOperating).label.text}

includes {$misplaced_concept} as a summation-child. The concept {$misplaced_concept} should not

appear as a child of {$cashOperating} because it does not have a balance type. Increase (Decrease) items

without balance attributes are used in a roll forward and should not be used in the cash flow statement

as they represent the impact on the balance sheet item which is the opposite of the impact on cash.

Rule Element Id:7481

Rule Version: 5.0"

Element_id 7481

severity error

https://xbrl.us/DQC_0047

118 | XULE Language Syntax | October 2023

DQC.US.0049.7483

assert dqc.us.0049.7483 satisfied

$must_be_present_concepts =

set('CashAndCashEquivalentsPeriodIncreaseDecrease','CashPeriodIncreaseDecreas

e','CashAndCashEquivalentsPeriodIncreaseDecreaseExcludingExchangeRateEffect',

'CashCashEquivalentsRestrictedCashandRestrictedCashEquivalentsPeriodIncreaseD

ecreaseIncludingExchangeRateEffect','CashCashEquivalentsRestrictedCashandRest

rictedCashEquivalentsPeriodIncreaseDecreaseExcludingExchangeRateEffect')

$nonallowed_root_elements = filter (navigate summation-item descendants from

CashAndCashEquivalentsPeriodIncreaseDecreaseExcludingExchangeRateEffect

taxonomy $us-gaap returns set (target-name)) returns $item.local-name

$networkPresRole = filter taxonomy().networks(parent-child) where

($item.concept-names.contains(StatementOfCashFlowsAbstract) or

$item.role.uri.lower-case.contains('cashflow')) and

$item.role.description.contains('- Statement ') and not $item.role.uri.lower-

case.contains('parenthetical') returns $item.role;

/* This uses navigation. It finds the root relationships and returns

the networks. Since it returns a set, the dups will be eliminated. */

for ($calcNetwork in

 filter taxonomy().networks(summation-item) where $item.role in

$networkPresRole)

 $roots = set(

 for $root in $calcNetwork.roots

 if ($root.name.namespace-uri != $extension_ns and

$root.name !=

NoncashOrPartNoncashAcquisitionNetNonmonetaryAssetsAcquiredLiabilitiesAssumed

1)

 $root.name.local-name

 else

 none)

$root_string = $roots.join(', ');

($roots intersect $must_be_present_concepts).length > 0 and ($roots intersect

$nonallowed_root_elements).length > 0

https://xbrl.us/DQC_0049

119 | XULE Language Syntax | October 2023

message

"The following elements {$root_string} are parent (root) elements defined in the calculation relationship

for the cash flow statement using the group {$calcNetwork.role.uri}. The cash flow statement should only

have one calculation parent for durational concepts representing the increase or decrease in cash during

the period. If the company has adopted ASU-2016-18 then the root element used to represent the

aggregate change in cash should be the element

CashCashEquivalentsRestrictedCashAndRestrictedCashEquivalentsPeriodIncreaseDecreaseIncludingExcha

ngeRateEffect. If the company specifically excludes the exchange rate effect from the total then the

element

CashCashEquivalentsRestrictedCashAndRestrictedCashEquivalentsPeriodIncreaseDecreaseExcludingExch

angeRateEffect should be used.

Rule Element Id:7483

Rule Version: 5.0"

Element_id 7483

severity error

120 | XULE Language Syntax | October 2023

Using External Data

assert values_compare satisfied

/** Shows how durational data in an instance can be compared to a previous filing

using an api that returns the previous filing as json from an XBRL API. An API could

also be used to get data such as stock quotes or exchange rates that could be used in

a rule **/

/** Returns an quarterly Apple Inc. filing in an XBRL OIM format **/

constant $prior_filing = json-

data('https://csuite.xbrl.us/php/dispatch.php?Task=xbrlValues&API_Key=4cd4576a-aada-

4d35-9e40-dc7f0734f8d6&Accession=0001628280-17-

000717&Ultimus=false&DimReqd=false&Format=json')

/** Get durational data from the current filing **/

$instance_element = [@concept.period-type = duration @concept.is-numeric = true];

$eop = $instance_element.period.end + time-span("P0D");

$sop = $instance_element.period.start + time-span("P0D");

$element_name = $instance_element.name.local-name;

/** Get data from prior filing **/

$old_value = filter $prior_filing['facts'] where

 $concept_name = $item['aspects']['xbrl:concept'];

 $num_dims = length($item['aspects']);

 $concept_local-name = $concept_name.substring($concept_name.index-of(':')+1);

$concept_local-name == $element_name and date($item['aspects']['xbrl:periodEnd']) ==

$eop and date($item['aspects']['xbrl:periodStart']) == $sop and $num_dims == 5 and

$item['value'].number != $instance_element returns $item['value'];

length($old_value) > 0

message

" The fact with a value of {$instance_element} for the element {$instance_element.name.local-name} does not

match the prior filing value of {$old_value[1].number}.

The properties of this {$instance_element.concept} fact are:

Period :{$instance_element.period}

Dimensions : {$instance_element.dimensions.join(', ','=')}

Unit : {$instance_element.unit}"

severity error

121 | XULE Language Syntax | October 2023

Appendix 4

XULE Properties

Property Name

Parameters (-

ve is optional) Object Applies To Parameters

abs 0 int, float, decimal, fact

all 0 list, set

all-labels 0 concept, fact

all-references 0 concept, fact

any 0 list, set

arc-name 0 relationship

arcrole 0 network, relationship

arcrole-

description 0 network, relationship

arcrole-uri 0 network, relationship

aspects 0 fact

attribute 1 concept, relationship

avg 0 list, set

balance 0 concept

base-type 0 concept, fact

clark 0

Qname, concept, fact, reference-

part

concept -1 fact, taxonomy, dimension

concept-names 0 taxonomy, network

concepts 0 taxonomy, network

contains 1 list, set, string, uri

content 0 footnote

count 0 list, set

cube 2 taxonomy

cube-concept 0 cube

cubes 0 taxonomy

122 | XULE Language Syntax | October 2023

data-type 0 concept, fact

date 0 string

day 0 instant

days 0 instant, duration

decimal 0 Int, float, decimal, string, fact

decimals 0 fact

default 0 dimension

denominator 0 unit

description 0 role

difference 1 set set

dimension 1 fact, taxonomy qname

dimension-type 0 dimension

dimensions 0 fact, cube, taxonomy

dimensions-

explicit 0 fact, cube, taxonomy

dimensions-

typed 0 fact, cube, taxonomy

document-

location all

drs-role 0 cube

dts-document-

locations 0 taxonomy

effective-weight 2 taxonomy qname, qname

effective-weight-

network -3 taxonomy qname, qname, network

end 0 instant, duration

entity 0 fact

entry-point 0 taxonomy

entry-point-

namespace 0 taxonomy

enumerations 0 type, concept, fact

fact 0 footnote

facts 0 Cube, instance

first 0 list, set

123 | XULE Language Syntax | October 2023

footnotes 0 fact

has-

enumerations 0 type, concept, fact

has-key 1 dictionary

id 0 entity, unit, fact

index 1 list, dictionary

index-of 1 string, uri

inline-ancestors 0 fact

inline-children 0 fact

inline-

descendants 0 fact

inline-display-

value 0 fact

inline-format 0 fact

inline-hidden 0 fact

inline-negated 0 fact

inline-parent 0 fact

inline-scale 0 fact

inline-transform -2 string

instance 0 fact

int 0 Int, float, decimal, string, fact

intersect 1 set

is-abstract 0 concept, fact

is-fact 0 fact

is-monetary 0 concept, fact

is-nil 0 fact

is-numeric 0 concept, fact

is-subset 1 set

is-superset 1 set

is-type 1 concept, fact

join -2 list, set, dictionary string, string

keys -1 dictionary

label -2 concept, fact

124 | XULE Language Syntax | October 2023

lang 0 label, footnote

last 0 list, set

last-index-of 1 string, uri Integer

length 0 list, set, string, uri, dictionary

link-name 0 relationship

local-name 0

qname, concept, fact, reference-

part

log10 0 int, float, decimal

lower-case 0 string, uri

max 0 list, set

min 0 list, set

mod 1 int, float, decimal, fact int, float, decimal, fact

month 0 instant

name 0 fact, concept, reference-part, type

namespaces 0 taxonomy

namespace-map 0 fact

namespace-uri 0

qname, concept, fact, reference-

part

network 0 relationship

networks -2 taxonomy

number 0 int, float, decimal, fact

numerator 0 unit

order 0 relationship, reference-part

part-by-name 1 reference

part-value 0 reference-part

parts 0 reference

period 0 fact

period-type 0 concept

power 1 int, float, decimal

preferred-label 0 relationship

primary-

concepts 0 cube

prod 0 list, set

125 | XULE Language Syntax | October 2023

references -1 concept, fact uri

regex-match 1 string, uri string

regex-match-all 1 string, uri string

regex-match-

string -2 string, uri string, number

regex-match-

string-all -2 string, uri string, number

relationships 0 network

role 0

network, label, reference,

relationship

role-description 0

network, label, reference,

relationship

role-uri 0

network, label, reference,

relationship

roots 0 network

round 1 int, float, decimal, fact int, float, decimal, fact

scheme 0 entity

signum 0 int, float, decimal, fact

sort -1 list, set string enum = “ASC”, “DESC”

source 0 relationship

source-concepts 0 network

source-name 0 relationship

split 1 string, uri string

start 0 instant, duration

stdev 0 list, set

string 0 all

substitution 0 concept, fact

substring -2 string, uri

sum 0 list, set

symmetric-

difference 1 set

target 0 relationship

target-concepts 0 network

target-name 0 relationship

126 | XULE Language Syntax | October 2023

taxonomy 0 instance

text 0 label

time-span 0 String, duration

to-csv 1 list

to-dict 0 list, set

to-json 0 list, set, dictionary

to-list 0 list, set

to-qname 0 string

to-set 0 list, set, dictionary

trim -1 string, uri

string enum = “left”,

“right”,”both”

trunc -1 int, float, decimal, fact

union 1 set

unit 0 fact

upper-case 0 string, uri

uri 0 role, taxonomy

used-on 0 role

values 0 dictionary

weight 0 relationship

year 0 instant

127 | XULE Language Syntax | October 2023

Appendix 5

XULE Functions that are not Properties

Function Name Parameters

Optional

Parameters Parameters

alignment 0 0 Used to get the alignment of a fact.

csv-data 4 2

File url, has headers, list of types, output as

dictionary

dict Define a dictionary

duration 2 0 Start date, end date

excel-data 5 4

File url, range, has headers,list of types, output as

dictionary

exists 1 0 Object to test exists.

first-value unlimited Must have at least one parameter

first-value-or-none unlimited Must have at least one parameter

json-data 1 0 File url

missing 1 0 Object to test is missing..

qname 2

random 1 1

Number of decimal places, defaults to 4 if none

provided

rule-name 0 0 Returns the rule name.

range 3 2

Accepts integers the first is the stop, the second is

the start and the third is the step.

xml-data-flat 5 3

File url, xpath expression, xpath expressions

return,list of return types, output as dictionary

128 | XULE Language Syntax | October 2023

Appendix 6

Error Codes

Run Time Errors

Error Code Description

DivByZero Represents a division by zero error.

IndexOutOfRange Index value does not exist in the list

InvalidArgument The argument to the function or property is not valid

InvalidProperty The property used with the object is not valid.

NotIndexable The index expression '[]' can only operate on a list or

dictionary. An index expression on a different object

such as a set will result in an error.

ShortNameDuplicate The role short name resolves to more than one arcrole

in the taxonomy.

TooFewArguments The function or property contains too few arguments

TooManyArguments The function or property contains too many arguments

UnsupportedOperandType An operator is used on a type that does not support

the operand.

Compile Errors

Error Code Description

DuplicateName A duplicate name for a rule, an output, a constant, a

namespace or a namespace group has been defined.

DuplicatePrefix Duplicate namespace prefix with different namespace.

MissingVariable A variable is not defined or cannot be found.

MissingNamespacePrefix Namespace prefix does not have a namespace or

namespace-group declaration.

129 | XULE Language Syntax | October 2023

NoOutputAttributeDefined In rule the result name is not defined as an output-

attribute.

Appendix 7

Taxonomy Object Model

130 | XULE Language Syntax | October 2023

Appendix 8

Instance Object Model

131 | XULE Language Syntax | October 2023

132 | XULE Language Syntax | October 2023

Appendix 9

EBNF Grammar (TO BE UPDATED)

Filter ::= 'filter' Expr ('where' Expr)? ('returns' Expr)?

Factset ::=

('{' FactsetBody '}') |

('[' FactsetBody ']') |

(FactsetBody)

FactsetBody ::= ('covered'|'covered-dims')? ('nils' 'nildefault'?|'nonils')? (AspectFilter)*

('where' Expr)?

AspectFilter ::= ('@' | '@@') (AspectName ('=' AspectExpr)? ('as' NCname)?)?

AspectName ::= ('concept' | 'unit' | 'entity' | 'period' | DimensionAspect | 'cube')

DimensionAspect ::= QName

Navigate ::= 'navigate' 'dimensions'?

Arcrole? Direction

'include start'?

('from' Concept)?

('to' Concept)?

('stop when' Expr)?

('role' Role)?

('drs-role' DRSRole)?

('linkbase' Linkbase)?

('cube' Hypercube)?

('taxonomy' Taxonomy)?

('where' Expr)?

('returns' ('by network')? ('list' | 'set')?

 'paths'? (ReturnComponents ('as' ('dictionary' | 'list'))?))?

ReturnComonents ::= ('source' | 'source-name' | 'target' | 'target-name' | 'order' | 'weight' |

'preferred-label' |

 'relationship' | 'cycle' | 'navigation-order' | 'navigation-depth' |

'dimension-type' |

 'dimension-sub-type' | Arc Attribute)

/* The return keyword must be followed by at least one more keyword */

Arcrole ::= Expr

Role ::= Expr

Taxonomy ::= Expr

Concept ::= Expr

Linkbase ::= Expr

Hypercube ::= Expr

DRSRole ::= Expr

133 | XULE Language Syntax | October 2023

Direction ::= 'descendants' | 'children' | 'ancestors' | 'parents' | 'sibling' | 'previous-

siblings' | 'next-siblings'

StringLiteral ::= '"' [^"]* '"' | "'" [^']* "'"

NCName ::= Name - (Char* ':' Char*)

 /* An XML Name, minus the ":" */

QName ::= PrefixedName

 | UnprefixedName

PrefixedName

 ::= Prefix ':' LocalPart

UnprefixedName

 ::= LocalPart

Prefix ::= NCName

LocalPart

 ::= NCName

NameStartChar

 ::= ":" | [A-Z] | "_" | [a-z] | [#xC0-#xD6] | [#xD8-#xF6] | [#xF8-#x2FF] | [#x370-#x37D]

| [#x37F-#x1FFF] | [#x200C-#x200D] | [#x2070-#x218F] | [#x2C00-#x2FEF] | [#x3001-#xD7FF] |

[#xF900-#xFDCF] | [#xFDF0-#xFFFD] | [#x10000-#xEFFFF]

NameChar ::= NameStartChar | "-" | "." | [0-9] | #xB7 | [#x0300-#x036F] | [#x203F-#x2040]

Name ::= NameStartChar (NameChar)*

134 | XULE Language Syntax | October 2023

Appendix 10 - Arelle Reference Implementation of XULE

Command Line Instructions for XULE Plugin

Command Description

--xule-compile XULE_COMPILE Xule files to be compiled. This may be a file or

directory. When a directory is provided, all files in the

directory will be processed. Multiple file and directory

names are separated by a '|' character.

--xule-compile-

type=XULE_COMPILE_TYPE

Determines how the compiled rules are stored.

Options are 'pickle', 'json'. Json files are significantly

larger than native pickle files, but are readable in an

editor.

--xule-rule-set XULE_RULE_SET

RULESET to use. This is the zip file created from

compiling the rules. This file is then passed as a

parameter when executing the rules

--xule-run Indicates that the rules should be processed.

--xule-arg XULE_ARG

Redefines a constant. In the form of 'name=value'.

This allows constants to be parsed to the processor

such as a username or any other parameter that is

used in processing the ruleset. The constant must

exist in the ruleset I.e myDate=2022-12-31. Multiple

arguments can be passed as follows: --xule-arg

abc=value --xule-arg xyz=value2

--xule-add-

packages=XULE_ADD_PACKAGES

Add packages to a xule rule set. Multiple package files

are separated with a |.

--xule-remove-

packages=XULE_REMOVE_PACKAGES

Remove packages from a xule rule set. Multiple

package files are separated with a |.

--xule-show-packages Show list of packages in the rule set.

--xule-bypass-packages Indicates that the packages in the rule set will not be

activated.

135 | XULE Language Syntax | October 2023

--xule-time XULE_TIME Output timing information. Supply the minimum

threshold in seconds for displaying timing information

for a rule. I.e. --xule-time .005

--xule-trace Output trace information.

--xule-trace-

count=XULE_TRACE_COUNT

Name of the file to write a trace count.

--xule-debug Output trace information.

--xule-debug-table Output trace information.

--xule-debug-table-

style=XULE_DEBUG_TABLE_STYLE

The table format. The valid values are tabulate table

formats: plain, simple, grid, fancy_gri, pipe, orgtbl, jira,

psql, rst, mediawiki, moinmoin, html, latex,

latex_booktabs, textile.

--xule-test-debug Output testcase information.

--xule-crash Output trace information if get a xule:error

--xule-pre-calc Pre-calc expressions

--xule-filing-

list=XULE_FILING_LIST

File name of file that contains a list of filings to

process. The filing list can be a text file or a JSON file.

If it is a text file, the file names are on separate lines. If

the file is a JSON file, the JSON must be an array.

Each item in the array is a JSON object. The file name

is specified with 'file' key. Additional keys can be used

to specific --xule options to use. These options will

override options specified on the command line.

Example: [{'file' : 'example_1.xml}, {'file' :

'example_2.xml', 'xule_rule_set'}]

--xule-max-recurse-

depth=XULE_MAX_RECURSE_DEPTH

The recurse depth for python. The default is 2500. If

there is a 'RecursionError: maximum recursion depth

exceeded' error this argument can be used to increase

the max recursion depth.

--xule-stack-

size=XULE_STACK_SIZE

Stack size to use when parsing rules. The default

stack size is 8Mb. Use 0 to indicate that the operating

system default stack size should be used. Otherwise

indicate the stack size in megabytes (i.e. 10 for 10

Mb).

136 | XULE Language Syntax | October 2023

--xule-server=XULE_SERVER Launch the webserver.

--xule-multi Turns on multithreading

--xule-cpu=XULE_CPU Overrides number of cpus per processing to use.

--xule-async Outputs on screen output as the filing is being

processed.

--xule-

numthreads=XULE_NUMTHREADS

Indicates number of concurrent threads will run while

the Xule Server is active

--xule-skip XULE_SKIP List of rules to skip. Rules are comma separated with

no space.

--xule-run-only XULE_RUN_ONLY List of rules to run. Rules are comma separated with

no space.

--xule-no-cache Turns off local caching for a rule.

--xule-precalc-constants Pre-calculate constants that do not depend on the

instance.

--xule-exclude-nils Indicates that the processor should exclude nil facts.

By default, nils are included.

--xule-include-dups Indicates that the processor should include duplicate

facts. By default, duplicate facts are ignored.

--xule-version Display version number of the xule module.

--xule-display-rule-set-map Display the rule set map currently used.

--xule-update-rule-set-

map=XULE_UPDATE_RULE_SET_MAP

Update the rule set map currently used. The supplied

file will be merged with the current rule set map.

--xule-replace-rule-set-

map=XULE_REPLACE_RULE_SET_MAP

Replace the rule set map currently used.

--xule-reset-rule-set-map Reset the rule set map to the default.

--xule-validate Validate ruleset

--logNoRefObjectProperties Excludes fact properties from the log file.

xule/xulecat Plugin

137 | XULE Language Syntax | October 2023

Explanation Provides information about a ruleset zip file. Prints out

the rule set file with version information and rule

structure.

Example --plugin 'xule|xule/xulecat' --xule-

rule-set dqc-us-2021-V20-ruleset.zip --

xule-cat cat

--xule-cat cat Prints out the rule set file with version information and

rule structure.

xule/saveXuleQNames Plugin

Explanation Use to generate a list of qnames from a taxonomy that

can be used by an editor to check that qnames are

valid.

Example --plugin 'xule/savexuleqnames' --xule-qnames-dir

'/GitHub/xule.dqc/dqc_us_rules/taxonomy/us/2023/

' --xule-qnames-format json -f

'https://xbrl.sec.gov/ecd/2023/ecd-2023.xsd' --

noCertificateCheck

--xule-qnames-dir Directory where concept qnames are output as a json
or xml file for use by a xule editor.

--xule-qnames-format Format of the qnames file. This can be json or xml.

138 | XULE Language Syntax | October 2023

Glossary

Term Definition

Alignment

The process of aligning facts with corresponding dimensions. For example the

facts for the 2017 year end are aligned so that Revenue for 2017 is aligned with

Expenses for 2017 so that Net Income for 2017 can be calculated correctly.

These facts have been aligned on the period dimension, the unit dimension and

the entity dimension. They are not aligned on the concept dimension.

Arc

Arcrole

Aspect

An all encompassing term for dimensions of a fact. An aspect includes

dimensions as well as the concept dimension, the units dimension, the entity

dimension and the period dimension. Decimals are not an aspect of a fact.

Assertion

Term used to define a rule assertion. The rule will return a boolean result if the

assertion passed or failed.

Attribute

A property of an element including its name, balance, data type, and whether

the element is abstract.

Axis

(pl. axes) – An instance document contains facts; an axis differentiates facts and

each axis represents a way that the facts may be classified. For example,

Revenue for a period might be reported along a business unit axis, a country

axis, a product axis, and so forth.

Balance

An attribute of a monetary item type designated as debit, credit, or neither; a

designation, if any, should be the natural or most expected balance of the

element “credit” or “debit” and thus indicates how calculation relationships

involving the element may be assigned a weight attribute (-1 or +1).

Boolean A data type expression used to indicate if a value an be true or false.

Child

Term used to define a relationship between two nodes when represented in a

tree. A child node is further from the root element in a tree.

Concept

A taxonomy element that provides the meaning for a fact. For example, "Profit",

"Turnover", and "Assets" would be typical concepts. [approximate technical

term: concept (XBRL v2.1) or primary item (XBRL Dimensions). Concept, as

defined here, excludes abstract concepts, and elements that are used to define

hypercubes, dimensions and members]

Concepts

Default

Definition

DEI SEC Approved Taxonomy used to capture Document and Entity Information.

Descendants All descendants of a node.i.e. The children of the children recurring.

Dictionary A data store used to store data. A dictionary is a multi dimensional array.

https://www.xbrl.org/guidance/xbrl-glossary/#taxonomy-element
https://www.xbrl.org/guidance/xbrl-glossary/#fact

139 | XULE Language Syntax | October 2023

Dimension XBRL technical term for axis

DQC Data Quality Committee of XBRL US.

DRS

Element

XBRL components (items, domain members, dimensions, and so forth). The

representation of a financial reporting concept, including: line items in the face of

the financial statements, important narrative disclosures, and rows and columns

in tables.

Entity

Exists A function used to determine if a value exists in an XBRL instance.

Expression

Extended

Extension

Fact

Represents a fact value in an instance and the associated aspects and

attributes of the fact.

Fact set

Represents the set of all possible facts in an instance. A new fact set is

generated after a filter is applied. Any set of facts in an instance is referred to as

a fact set.

Filter

Fiscal

Function

GAAP Generally Accepted Accounting Principles.

Instance

XML file that contains business reporting information and represents a collection

of financial facts and report-specific information using tags from one or more

XBRL taxonomies

Item

Iteration

Key

Label

Legal entity

Length

Linkbase

Technical construct that defines relationships, for example, those used to create

a presentation tree or calculation tree.

List

Local

Loop

Member

https://www.xbrl.org/guidance/xbrl-glossary/#presentation-tree
https://www.xbrl.org/guidance/xbrl-glossary/#calculation-tree

140 | XULE Language Syntax | October 2023

Message

Namespace

A namespace is a globally unique identifier that differentiate names created by

different sources. In XBRL usage, namespaces are used to disambiguate the

taxonomy element names defined in taxonomies. For example, different regional

accounting standards might define a concept called "Profit". Namespaces are

used to differentiate the UK GAAP definition of "Profit" from the US GAAP

definition of "Profit". Namespaces are URIs, which are identifiers that follow the

same format as URLs, which are used to locate resources on the internet.

Navigate

Navigation

Networks

Networktype

Number

Object

Order

Output

Parent

Part

Period

Primary

Property

Qname

Quarter

Reference

Relationship

Reported

Return

Role

Root

Set

Severity

Source

String

Syntax

https://www.xbrl.org/guidance/xbrl-glossary/#taxonomy-element
https://www.xbrl.org/guidance/xbrl-glossary/#concept

141 | XULE Language Syntax | October 2023

Cube

A view of a taxonomy or report that is designed to replicate tables for
presentation or data entry purposes. Cube structures are typically used
to cope with the complex, dimensional reports often seen in prudential
reporting.

Target

Taxonomy

An XBRL taxonomy defines taxonomy components that provide meaning for the

facts in an XBRL report. For example, a taxonomy for an accounting standard

would include definitions of concepts such as "Profit", "Turnover", and "Assets".

Taxonomies may contain a very rich set of information, including multi-language

labels, links to authoritative definitions (for example, accounting standards or

relevant local laws) , validation rules and other relationships.

Tolerance

Unit

Values

Variable

Xule

Uri

https://www.xbrl.org/guidance/xbrl-glossary/#taxonomy-component
https://www.xbrl.org/guidance/xbrl-glossary/#fact
https://www.xbrl.org/guidance/xbrl-glossary/#xbrl-report
https://www.xbrl.org/guidance/xbrl-glossary/#concept

	Overview
	XULE Syntax
	Fact Set Filtering
	Taxonomy Navigation
	Importance of Types
	Concepts, QNames and Local Names

	Data Model
	XULE Processing Model
	Iterations

	Evaluating Facts
	Fact Sets
	Fact Set without Dimensions

	Fact Set Filters
	Concept Filter
	Period Filter
	Unit Filter
	Entity Filter
	Dimension Filter
	Instance Filter
	Aspect Filter Operators
	Non-Equivalence (Complement) Operator
	In Operator

	Combining Aspect Filters
	Where Filters
	Fact Property Notation
	Aspect Alias
	Unknown Aspects

	Implicit Matching
	Covering

	Nested Alignment (Alignment Windows)
	Nil Values
	Nil Values in an Expression

	None Values and Iteration
	Handling of None

	Skipping an Iteration
	Fact Set Grammar Syntax

	Defining Fact Sets as Variables
	Cube as a Filter
	Navigation
	Arcrole
	Direction
	Role
	Starting and Ending Navigation
	Stopping Navigation
	Taxonomy
	Filtering Results
	Return Options
	Returning a dictionary
	Returning a list - duplicate results
	Returning networks
	Returning paths

	Dimensional Navigation
	Pseudo arc roles
	DRS role
	Dimension return components
	Alternative to dimensional navigation

	Navigation Expression

	Filtering Collections
	Conditional and Iterative Statements
	Iterative Statements (Loops)
	Conditional Statements (If-else statements)

	Setting Variables
	Order of Evaluation

	Collections (Sets, Lists and Dictionaries)
	Sets
	Set and List Operators and Properties
	Dictionaries
	Dictionary Operators and Properties

	Instance Objects (V1.2)
	Instance Object
	Instance Properties

	Fact Object
	Fact Properties

	Period Object
	Period Properties

	Unit Object
	Unit Properties

	Footnote Object
	Footnote Properties

	Taxonomy Objects
	Concept Object
	Concept Equality
	Concept Properties

	Reference Object
	Reference Properties

	Parts Object
	Label Object
	Label Object Properties

	Data Type Object
	Type Object Properties

	Cube Object
	Cube Properties

	Dimension Object
	Members Object (Not Yet Implemented)
	Taxonomy (DTS) Object
	Taxonomy Properties

	Network Set Object
	Network Object
	Network Properties

	Role Object
	Role Properties

	Relationship Object
	Relationship Properties

	Properties and Functions
	Numerical Properties and Functions
	String Functions and Properties
	Generic Properties
	Date Properties and Functions
	Aggregation Functions
	Statistical Functions
	Existence Functions
	Unit Functions
	DTS Functions
	Range Function
	Data Import and Transformation Functions
	Information Functions
	Custom Functions

	Recognising Qnames
	Defining Namespaces
	Namespace Group (V1.2)
	Assertion Types
	Satisfied Types
	Rule Output
	Output Attributes
	Passing Variables to Rule Output
	Tagging Values for use in Output
	Fact Properties and Rule Focus
	Rule Value
	Labels in Messages
	Special Characters in Messages
	Rule Name Prefix
	Rule Suffix
	Predefined Output Attributes

	Iterations and Alignments
	Multiple Fact Sets
	Lists, Sets and Iterations
	FACT Iterations versus FOR iterations
	SKIP in a list or Set

	Impact of Syntax on Performance
	Operators
	Versions
	Upcoming Versions
	Examples
	XULE Properties
	XULE Functions that are not Properties
	Error Codes
	Run Time Errors
	Compile Errors

	Taxonomy Object Model
	Instance Object Model
	EBNF Grammar (TO BE UPDATED)
	Command Line Instructions for XULE Plugin
	Glossary

