

XINCE Language Syntax for
XBRL - V1.0

Version 1.0

2 | XINCE Language Syntax | October 2023

Overview
The XINCE syntax is a domain specific language used to define and create XBRL instances. The

XINCE language uses the XULE syntax to manipulate facts prior to outputting XBRL instances in

a JSON or XML format. The diagram below shows how different components can be combined

to create instance documents.

Instance Creation Components

XINCE Ruleset Definition
The XINCE ruleset definition is the same as a XULE ruleset. It is a collection of XULE files that

defines the expressions that will create the instance document or documents. These files will

generally include the following:

● Namespace definitions

● Output-attribute definitions

● Constant definitions

● Output statements

Namespace Definitions

These are regular XULE namespace definitions. The namespaces of any qnames defined in the

output statements need to be defined. In addition, namespaces of facts that will be generated by

XINCE also need to be defined.

3 | XINCE Language Syntax | October 2023

Output Attribute Definitions

These need to be defined as part of the XINCE ruleset. These are defined as follows:

output-attribute instance-name

output-attribute instance-taxonomy

output-attribute fact-value

output-attribute fact-concept

output-attribute fact-unit

output-attribute fact-entity

output-attribute fact-period

output-attribute fact-decimals

output-attribute fact-dimensions

output-attribute fact-add-dimension

output-attribute fact-remove dimension

output-attribute fact-instance

output-attribute fact-alignment

output-attribute fact-footnote

output-attribute fact-id

output-attribute fact-is-nil

Output Statements

Output Header

The instance or instances are defined by consolidating a series of output statements. Each output

statement has a name that defines the output. All of the output statements are run. At the

completion of processing the output statements an instance or instances are produced.

Output Body

The body of an output statement is a XULE expression that returns values or facts that can be

passed to the output attributes. The output body has to create an iteration to create a fact. This

can be achieved by defining a fact set or a for loop. Each iteration of the expression will

generate a fact. The output body can use any XULE expression defined in the XULE syntax.

Output Attributes

The output attributes define the facts that are generated by the iteration. The output attributes

can use variables defined as part of the output body, constants or a special function called

alignment().

4 | XINCE Language Syntax | October 2023

The alignment function returns the alignment of the fact. When used with the fact-alignment

attribute the alignment of the iteration is applied to the fact. This means the individual

dimensional values of each fact do not have to be defined.

The XINCE syntax defines a number of XULE output attributes that are used to control the content

of the instances created.

The standard output attributes understood by XINCE are as follows:

● instance-name

● instance-taxonomy

● fact-value

● fact-concept

● fact-unit

● fact-entity

● fact-period

● fact-decimals

● fact-dimensions

● fact-add-dimensions

● fact-remove-dimension

● fact-instance

● fact-alignment

● fact-footnote

● fact-id

● fact-is-nil

Output Attribute Definition Examples

instance-name A text string that defines the name of

the instance. This can be a variable

or a string. It must be unique

instance-name 'My Instance'

instance-

taxonomy

The taxonomy used by the instance.

This can be a single taxonomy or a

list of taxonomies. This can only be

used with instance-name.

instance-taxonomy

list('https://www.sec.gov/Archi

ves/edgar/data/891166/000089116

622000114/uve-20220930.xsd',

'abc.xsd').to-json

fact-value Defines the value of the fact. fact-value 123000000

5 | XINCE Language Syntax | October 2023

fact-concept Defines the concept used by the

fact. If a variable is not used the

qname is provided with the full

namespace in curly brackets. The

curly brackets must be escaped with

a backslash.

fact-concept

'\{http://fasb.org/us-

gaap/2022\}Assets'

fact-unit Defines the unit associated with the

fact.

fact-unit unit(iso4217:USD).to-

xince

Assigns a unit of USD on the fact

fact-unit $rule-value.unit.to-

xince

Assigns the unit of the rule fact

fact-entity Defines the entity associated with

the fact.

fact-entity

entity('http://some/schema',

'CompanyA').to-xince

fact-period Defines the period associated with

the fact.

fact-period date('2022-12-

31').to-xince

fact-decimals Defines the decimals associated with

the fact.

fact-decimals -6

fact-dimensions Define a dictionary of axis member

pairs

fact-dimensions

$fact.dimensions.to-xince

Assigns the dimensions of the

$fact variable

fact-dimensions
dict(list("{http://fasb.org/us-
gaap/2022}StatementEquityComponentsAxis”,"{
http://fasb.org/us-

gaap/2022}CommonStockMember")).to-xince

Assigns the dimension

StatementEquityComponentsAxis

and member CommonStockMember to

the fact.

fact-dimensions
dict(list(StatementEquityComponentsAxis,Com
monStockMember")).to-xince

6 | XINCE Language Syntax | October 2023

fact-add-

dimension

Add an additional dimension to the

dictionary.

fact-add-dimension
dict(list(StatementEquityComponentsAxis,Com
monStockMember")).to-xince

Adds an additional dimension

member pair to the fact.

fact-remove-

dimension

Remove a dimension from an

existing dictionary of dimensions

fact-remove-dimension
dict(list(StatementEquityComponentsAxis,Com
monStockMember")).to-xince

Removes the dimension member

pair from the fact if it exists.

fact-instance Assigns a fact to a specific instance

based on the instance name. The

fact of the iteration is assigned to the

instance.

fact-instance 'My Instance'

fact-alignment Allows the alignment to be set based

on the fact iteration. This copies all

of the alignment from the current

iteration onto the fact. Any alignment

can be overwritten by the other

output attributes listed above. The

value is a dictionary. The value can

also be set using the alignment()

function, which is a json string.

fact-alignment alignment().to-

xince

Assigns the iteration alignment

to the fact.

fact-footnote Defines the footnote associated with

the fact. Can be passed as the

footnote property or as a dictionary.

fact-footnote $fact.footnote

Copies the footnote from the

original fact to the new instance

fact.

fact-footnote

list(dict(list('lang', 'en-

US'),list('arcrole',

'footnote'),list('content',

'hello'))).to-xince

Assigns the defined footnote

with the content 'hello' to the

generated fact.

fact-id Define a fact id for a fact. If a fact id

is duplicated, xince will increment

that id by adding a number.

fact-id 'abc'

7 | XINCE Language Syntax | October 2023

Assigns a fact id of 'abc' to the

fact.

fact-is-nil Defines if the fact has a nil value or

not. The value has to resolve to true

or false.

fact-is-nil $rule-value.is-nil

Assigns a value of nil is true

to the fact.

Output attributes can include expressions. However output attributes cannot create iterations.

This means fact set expressions cannot be defined in the output attribute. For loops can, as

long as they are included within a set or a list.

Creating Facts
To create a fact the dimensions of the fact have to be passed to the fact using the output

attributes. A single output rule can create many facts. Every fact that is created must specify

the instance document that it belongs to.

XINCE created facts are sent to the output log. All values sent to the log are sent as a string.

This means all XULE objects must be converted to a string representation when used with an

output attribute. XINCE includes a property called to-xince, that will convert XULE objects to a

string representation of the object that can be included in the output attribute.

Fact Generation Examples

Example 1

The following rule will take every monetary fact in an instance document, multiply the value by

10% and output the result as a new instance called myInstance.

output createInstance

true

instance-name “myInstance”

instance-taxonomy

'https://www.sec.gov/Archives/edgar/data/891166/000089116622000114/uve-20220930.xsd'

output add_fact_values

{@ where $fact.is-monetary}

true

fact-value $rule-value * 1.1

fact-concept $rule-value.concept.to-xince

fact-unit $rule-value.unit.to-xince

fact-entity $rule-value.entity.to-xince

https://www.sec.gov/Archives/edgar/data/891166/000089116622000114/uve-20220930.xsd

8 | XINCE Language Syntax | October 2023

fact-period $rule-value.period.to-xince

fact-decimals $rule-value.decimals

fact-dimensions $rule-value.dimensions.to-xince

fact-instance “myInstance”

The rule will iterate through each fact value and multiply it by 1.1. All the dimensions have been

explicitly stated. Rather than listing out all the dimensions of the fact the fact-alignment output

attribute can be used with the alignment function to save listing out all the dimensional attributes.

The instance expression above can be expressed as follows using alignment().

output add_fact_values

{@ where $fact.is-monetary}

fact-value $rule-value * 1.1

fact-alignment alignment().to-xince

fact-decimals $rule-value.decimals

fact-instance “myInstance”

Decimals have to be defined as they do not comprise the fact alignment. If no fact decimal is

provided it defaults to infinite.

Example 2

The following rule will take every monetary fact in an instance document, multiply the value by

20%, and increment all the period values by one year and output the result as a new instance

called myInstance.

output add_instant_fact_values

{@ where $fact.is-numeric and $fact.concept.period-type == instant}

fact-value $rule-value * 1.2

fact-alignment alignment().to-xince

fact-period ($rule-value.period.end + time-span('P1Y')).to-xince

fact-decimals $rule-value.decimals

fact-instance “myInstance”

output add_duration_fact_values

{@ where $fact.concept.period-type == duration}

fact-value if $rule-value.concept.is-numeric $rule-value * 1.2 else $rule-

value

fact-alignment alignment().to-xince

fact-period duration($rule-value.period.start + time-span('P1Y'),$rule-

value.period.end + time-span('P1Y')).to-xince

9 | XINCE Language Syntax | October 2023

fact-decimals $rule-value.decimals

fact-instance “myInstance”

If the instance taxonomy differs from one output rule to another then the processor will use the

one it finds first.

Creating Footnotes
Xince allows the creation of footnotes in a new instance. This can be achieved by using the

footnote on a fact in an instance that is being copied or by creating a new footnote. To include the

footnote from a reference instance the attribute fact-footnote is used and the footnote property of

the fact is assigned.

fact-footnote $fact.footnote

Alternatively one or more footnotes can be assigned to a fact using a list of dictionaries. Each

footnote is defined as a dictionary collection with the following possible keys:

● role

● lang

● arcrole

● content

● id-ref

To define a footnote on a fact say hello the following expression is used:

fact-footnote list(dict(list('lang', 'en-US'),

 list('arcrole', 'footnote'),

 list('content', 'hello '))

).to-xince

To add multiple footnotes additional dict items are added to the list. In each of these examples

the footnote is added at the same time as the fact is created.

Referencing Existing facts

Xince allows the creation of footnotes that are not only textual values, but also footnotes that

reference other facts in the instance. This requires knowledge of the reference id of the fact

being referenced. The syntax is as follows:

fact-footnote list(dict(list('role', 'link/role'),

 list('arcrole', 'fact-footnote'),

 list('id-ref', 'fact10'))

).to-xince

10 | XINCE Language Syntax | October 2023

Arelle Reference Implementation of XULE

Command Line Instructions

Command Description

--xince-location=Location of

the folder

Directory or folder where the generated instance file

will be created.

--xince-show-xule-log Indicates to output the xule log.

--xince-file-

type=XINCE_FILE_TYPE

Used to define the type of instance output. Valid

values are 'json' or 'xml'. The default format is json.

	Overview
	XINCE Ruleset Definition
	Namespace Definitions
	Output Attribute Definitions
	Output Statements
	Output Header
	Output Body
	Output Attributes

	Creating Facts
	Fact Generation Examples
	Example 1
	Example 2

	Creating Footnotes
	Referencing Existing facts

	Command Line Instructions

