

XBRL Application
Programming Interface (API)

Version 1.4 - DRAFT

1 | XBRL Application Programming Interface | June 2019

Table Of Contents

1 Overview 3

2 Structure of the API 4

2.1 Types 4

2.2 Object Property Format 4

2.3 Nested Objects 5

3 Query Parameters 6

3.1 Fields 6

3.2 Sort 7

3.3 Limit 7

3.4 Search 8

4 Factual Objects 9

4.1 Fact Object 9

4.2 Report Object 15

4.3 Entity Object 18

5 Taxonomy (Metadata) Objects 19

5.1 Concept Object 20

5.2 Label Object 24

5.3 DTS Object 26

5.4 Network Object 28

5.5 Relationship Object 31

6 Assertion Objects 34

6.1 Retrieving Errors from the XBRL US Database 34

6.2 Validating a filing 36

7 Handling Paging 38

8 Error Messages 39

8.1 Invalid Search parameter 39

8.2 Invalid Endpoint 39

8.3 Fields Attribute Missing 39

8.4 Invalid Search Value 39

8.5 Invalid Object Name 40

8.6 Wildcard with no Object Name 40

8.7 Invalid Integer on a Limit or Offset Function 40

8.8 Invalid Sort Parameter 40

8.9 Exceeded Limit Amount 41

9 Authentication 42

2 | XBRL Application Programming Interface | June 2019

9.1 Client Authorization 42

9.2 Making a Request 43

10 Constructing a Request for Information 44

11 Getting Started 45

12 Google Sheets 47

12.1 Google Sheet Functions 48

3 | XBRL Application Programming Interface | June 2019

XBRL API - Version 1 - DRAFT

1 Overview

The XBRL API is designed to standardize the method used to request XBRL data from any

database containing XBRL-formatted data. Prior to the introduction of a standard API,

developers building an XBRL application had to take the following steps:

1. Acquire the data from an authoritative source

2. Process that data

3. Load that data into a database using a transformation and load process.

4. Generate a reporting mechanism to extract the stored information in meaningful ways.

5. Establish a database maintenance plan to accommodate software updates, document

restatements and general operational maintenance.

Any developer interested in building an XBRL application historically needed to build this data

collection infrastructure.

Alternatively, a software developer interested in developing an XBRL application could negotiate

with a data utility that offers XBRL-formatted data, and build an application based on that utility’s

proprietary infrastructure. This represents a significant barrier to entry because the developer

must negotiate a data agreement even before starting to develop software, and more

importantly, adopting proprietary infrastructure effectively locks the developer into relying on a

single platform, limiting the ability to easily add additional data sources or switch providers.

The purpose of the XBRL API is to provide a unified interface to stored XBRL data which any

data utility can adopt. This unified interface allows developers with limited XBRL knowledge to

learn a single interface to access many data repositories. This expands access to the market

for available data, while also encouraging the use of fundamental structured data.

The XBRL API can be used in several ways. The API can be used with a stand alone REST

client; it can be integrated into new software; or it can be accessed by web software. To access

the API, each use must be authenticated. After authentication, queries can be run by submitting

combinations of urls and parameters.

4 | XBRL Application Programming Interface | June 2019

2 Structure of the API

The API is structured to allow you to return the details of XBRL objects. These objects are used

to classify XBRL data. These objects generally fall into two categories: facts and data

taxonomy. Each object has multiple properties that can be used to define the query. Some are

shared and others are unique to the object. Objects can also be nested allowing specific

information about the main object to be retrieved.

2.1 Types

Factual Data

Reported values that would appear in an XBRL instance are considered “factual data”. For

example, 0.85 is factual data in an XBRL instance representing Basic earnings per share for

Microsoft. Additional information is included in the API to assist in comparability. The object

name to access this information is: fact. Factual data also includes objects related to how the

data is organized. For example collections of data can be grouped in a report. Information about

a report is classified using the report object. Data applicable to a specific entity who is reporting

is also captured and the details are in the entity object.

Taxonomy Data (Metadata)

All factual data has metadata associated with it, which can include labels, references,

calculations between concepts, how the data is presented, which base taxonomies are used,

etc. The objects to access this information are: dts, concept, label, reference, parts, network

and relationship. These objects can be used to access all the data that would normally be

defined in an XBRL taxonomy.

2.2 Object Property Format

Each object has properties that can be accessed by requesting them from the API. The property

of the object is defined using a dot notation. To get the value of a property for an object, the

following format is used: Object.property. For example, to return the value of the fact, use

“fact.value”. These properties can also be used to search for data. Not all properties of the

object are searchable.

Some of the properties may be defined as components of other objects and are inherited from

these objects.

5 | XBRL Application Programming Interface | June 2019

2.3 Nested Objects

Nested objects allow you to pull sub-object information from the main object. Sub-objects that

can be used are dependent on the main object. For example, facts can be returned for specific

reports, and relationships can be returned for specific networks. The nesting structure of the API

is discussed in the rest of the document.

6 | XBRL Application Programming Interface | June 2019

3 Query Parameters

In addition to being able to access data through a specific object, data that is returned via the

API can be controlled by defining the data to be returned, indicating how many records should

be returned, and in which sequence they should be returned.

3.1 Fields

By default, not all fields are returned when you make a query. You can choose the fields that

you want returned with the fields query parameter. This is useful for making your API calls more

efficient.

/api/v1/fact/{fact-id}?fields=fact.value

This will return the value of a fact for a given fact id. The fact id is defined as part of the end point i.e.

{fact.id}

The fields parameter allows as many fields to be returned by the user as they need. Each field

requested is separated using a comma without white space. The order of the fields returned is

based on the position in the fields string. For example, submitting the request below will return

the value of the given fact first, and the concept name second.

/api/v1/fact/141024005?fields=fact.value,concept.local-name

 The response in json would be as follows:

 [

 {

 "fact.value": "469033000",

 "concept.local-name": "Assets",

 "fact.id": 141024005

 }

]

Note that the fact.id is also returned, as this was passed as a parameter.

To return all the properties of an object, a wild card of * can be used with the property, for

example:

/api/v1/fact/{fact-id}?fields=fact.*

7 | XBRL Application Programming Interface | June 2019

This will return all the properties of the fact object in alphabetical order. Note that this will

include properties of other objects associated with the fact such as concept.local-name or

period.instant or report.id.

3.2 Sort

Any value returned can be sorted in ascending or descending order, by adding an additional

property to a field value. In the following example, we want to return all filings made by a

specific company, sorted in order from the latest filing to the earliest. To do this we sort based

on the timestamp that the filing was received. For example:

api/v1/report/search?entity.cik=0001493040&fields=report.*,report.accepted-

timestamp.sort(DESC)

This call searches the report object for a specific entity identifier called a CIK1 and returns the

report details. Note that the fields include report.*. This will return all the properties of the report

object. In addition, the report.accepted-timestamp field is defined with a sort property with a

parameter of DESC. This means the call will return all reports for this CIK sorted by accepted

timestamp in a descending order. Multiple sort criteria can be defined and the sort sequence is

determined by the order defined in the fields parameter. In the above example, we could sort by

document type, then by accepted timestamp as follows:

fields=report.*,report.document-type.sort(DESC),report.accepted-

timestamp.sort(DESC)

Fields can be sorted either in descending (DESC) or ascending (ASC) order.

3.3 Limit

In addition to sorting on a field, it is possible to limit the number of records returned for a given

object. A limit can only be added to an object type and not a property. For example, to limit the

number of reports in the above query the limit property would appear on the report as follows:

 report.limit(10)

A limit cannot be used on a property like report.document-type:

 report.document-type.limit(10)

1
 Central Index Key which is a 10-digit number used on the Securities and Exchange Commission's computer

systems to identify corporations and individuals who have filed disclosure with the SEC.

8 | XBRL Application Programming Interface | June 2019

To limit the number of records returned to 2, the following syntax is used:

fields=report.*,report.document-type.sort(DESC),report.limit(2)

3.4 Search

The search keyword is used as an endpoint in many URIs. This indicates to the API that you will

be searching on a property of the object. A search can be performed on one object at a time,

and is based on the first object that appears in the URI.

For example, in the following uri, entity.cik is the property searched on with the report object:

/api/v1/report/search?entity.cik=0001493040&fields=report.*

Multiple parameters can be included in a search. In the case below, the API will return facts for

a given CIK for Assets for 2017 in the first quarter:

/api/v1/fact/search?concept.local-name=Assets&period.fiscal-

year=2017&period.fiscal.period=1Q&Entity.cik=0000001&fields=fact.value

A user cannot search on a property that is not a component of the object. In the example above

the endpoint is referencing the fact object (fact appears after v1) so a user must search on a

valid fact property. If a user searched on the property network.arcrole-uri the result would fail

with the following message:

{"status": "Invalid Parameter",

"body": "The url contains the search parameter network.arcrole-uri. Only the

following search parameters can be used with this url: period.calendar-period,

period.fiscal-period, period.year, period.fiscal-year, period.id, period.fiscal-id,

concept.namespace, concept.local-name, concept.id, concept.is-base, concept.is-

monetary, report.id, report.accession, report.entry-url, report.restated-index,

report.restated, report.sec-url, report.sic-code, entity.cik, entity.id, fact.id,

fact.value, fact.ultimus-index, fact.ultimus, fact.has-dimensions, fact.is-

extended, fact.hash, unit, dts.id, dts.entry-point, dts.target-namespace,

dimensions.id, dimension.namespace, dimension.local-name, member.local-name."

}

Note that the error message returns all the valid search criteria of the fact object.

9 | XBRL Application Programming Interface | June 2019

4 Factual Objects

Factual objects are used to represent data that is not defined in an XBRL taxonomy or

metadata. The API includes a fact object, a report object and entity object. The fact object is

used for data from any source. The report object is only applicable when data is defined in a

report. The following diagram shows the end points to access data in each of these objects

4.1 Fact Object

Facts can be accessed via three fact object end points.

A fact can be returned based on its identifier:

/api/v1/fact/{fact-id}

Or a fact can be returned by searching for a set of facts based on search parameters:

/api/v1/fact/search

The API allows the user to search on a number of properties of a fact but not on all of them. The

properties that can be searched on are listed below:

A fact can be returned based on search parameters:

/api/v1/fact/search?concept.local-name=Assets&period.fiscal-

year=2017&period.fiscal-period=1Q&entity.cik=000000001&fields=value,

report.id

This will return facts for assets in the first quarter of fiscal year 2017 for the entity with a CIK of

000000001.

Facts can also be accessed from the report object:

10 | XBRL Application Programming Interface | June 2019

/api/v1/report/190220/fact/search?period.fiscal-

year=2016&fields=report.id,report.document-

type,report.address,report.filing-date.sort(DESC),report.entity-

name,entity.cik,concept.local-name,fact.value,unit,period.fiscal-

period,period.fiscal-year,dimensions,fact.limit(10)

This will return all fact values for the given report 190220 where the fiscal year is equal to 2016

and will limit the fact records to 10 items.

Searching on Taxonomy defined Aspects

The API allows you to search on specification defined aspects such as period, unit, entity and

concept. The API also allows you to search on taxonomy defined aspects. Because the API

does not know in advance that an aspect is taxonomy defined the keyword aspect is used. To

search for those facts where the cash and cash equivalents aspect is used with a mutual fund

the following string can be added to the search parameter:

/api/v1/fact/search?aspect.CashAndCashEquivalentsAxis=MoneyMarketFundsMembe

r

This is different than searching on the following:

/api/v1/fact/search?dimension.local-

name=CashAndCashEquivalentsAxis&member.local-name=MoneyMarketFundsMember

The second query will also return those facts that could have 2 dimensions such as :

● CashAndCashEquivalentsAxis=member1 and Axis2=MoneyMarketFundsMember

Using a taxonomy defined aspect search is more accurate especially when a fact has more than

1 dimension associated with it.

Fact Fields

The Fact object has the following attributes that can be returned as fields:

Fields Search Description

period

period.start Start date.

11 | XBRL Application Programming Interface | June 2019

period.end End date.

period.instant Point in time date.

period.calendar-period T Calendar period i.e 1Q.

period.fiscal-period T Fiscal period i.e 1Q.

period.year T Year of the fact.

period.fiscal-year T Fiscal year of the fact.

period.id T Id of the period.

period.fiscal-id T Id of the fiscal period.

concept

concept.namespace T The full namespace of the concept.

concept.local-name T The local name of the concept.

concept.period-type The period type of the concept.

concept.datatype The datatype of the concept.

concept.balance-type The balance type of the concept.

concept.id T Object id of the concept.

concept.is-base T Boolean if the element is a base
taxonomy element

concept.is-monetary T Boolean indicator if the value is a
monetary amount.

report

report.accession T Accession identifier associated with
the report if applicable.

report.creation-software Software used to create the report.

report.entry-url URL location of the report.

report.filing-date Filing date of the report.

report.id T Object id of the report.

report.period-end Period end of the report.

12 | XBRL Application Programming Interface | June 2019

report.restated-index T The restated index associated with
the fact.

report.restated T Boolean indicator if the report is
restated.

report.sec-url T URL of SEC index page for the filing

report.sic-code T SIC code of the report

report.type Report type name, i.e. 10-K.

entity

entity.cik T The CIK (Central Index Key) of the
entity.

entity.id T Object id of the entity.

entity.name Legal name of the entity.

entity.scheme Scheme of the identifier.

fact

fact.decimals Returns the decimals of the fact if
applicable.

fact.has-dimensions T Boolean indicator if the fact has an
associated dimensional breakdown.

fact.hash T Fact hash of the fact.

fact.id T Object id of the fact.

fact.inline-display-value Value displayed in the inline filing.

fact.inline-is-hidden Boolean indicator if the inline value
is hidden

fact.inline-negated Boolean indicator if the value is
negated.

fact.inline-scale Scale of the inline value. Used as a
multiplier of the display value to get
the XBRL value.

fact.numerical-value Returns the numerical value of the
fact.

13 | XBRL Application Programming Interface | June 2019

fact.ultimus-index T The ultimus index associated with
the fact.

fact.ultimus T Boolean indicator if it is the last
reported fact.

fact.value T Returns the value of the fact.

fact.xml-id Returns the xml-id of the fact if
applicable.

unit T Returns the qname measure of the
unit. Returns the numerator if it is a
fraction.

unit.symbol Returns the symbol of the fact.

unit.qname Returns the qname of the unit.

unit.numerator Returns the numerator of the unit.

unit.denominator Returns the denominator of the unit.

dts

dts.id T The dts id associated with the fact.

dts.entry-point T The url entry point associated with
the dts of the fact.

dts.target-namespace T Namespace of the DTS.

dimensions Returns a dictionary of key values,
pairs of dimension concepts and
member concepts.

dimension.is-base T Indicates if any of the dimensions in
the set of dimensions associated
with the fact is a base dimension.
Only returns true if all dimensions
are base dimensions. If one or
dimensions is an extension then the
field will be false. (This will not
duplicate the fact record)

dimension.local-name T The local name of a dimension
associated with a fact. (Use of this in
a field can duplicate records where a
fact has multiple dimensions
associated with it, the dimensions

14 | XBRL Application Programming Interface | June 2019

field can be used instead to get a
group).

dimension.namespace T The namespace of a dimension
associated with a fact. (Use of this in
a field can duplicate records where a
fact has multiple dimensions
associated with it, the dimensions
field can be used instead to get a
group).

member.is-base T Indicates if any of the members in
the set of members associated with
the fact is a base member. Only
returns true if all members are base
members. If one or members is an
extension then the field will be false.
(This will not duplicate the fact
record)

member.local-name T The local name of a member
associated with a fact. (Use of this in
a field can duplicate records where a
fact has multiple dimensions
associated with it, the dimensions
field can be used instead to get a
group).

member.namespace T The namespace of a member
associated with a fact. (Use of this in
a field can duplicate records where a
fact has multiple dimensions
associated with it, the dimensions
field can be used instead to get a
group).

dimensions.id T Object id of the dimension.

dimensions.count Number of dimensions associated
with the fact.

footnote Returns the footnotes associated
with a fact. There can be zero or
more footnotes associated with a
fact.

footnote.id The id associated with the footnote.

15 | XBRL Application Programming Interface | June 2019

footnote.lang The language of the footnote text.

footnote.role The full role name of the footnote.
Indicates the type of relationship
between the fact value and the
footnote text. For example
http://www.xbrl.org/2003/arcrole/f
act-footnote

footnote.text The text of the footnote.

4.2 Report Object

Reports can be accessed via four report object end points.

A report can be returned based on its identifier:

/api/v1/report/{report-id}

Or a report can be returned by searching for a report based on parameters such as sic code

and document type. The following request will return the details of the reports for sic code 4911

which was a 10-K2:

/api/v1/report/search?&report.sic-code=4911&report.document-type=10-

K&report.period-index=1,2,3,4&fields=report.*,report.accepted-

timestamp.sort(DESC)

The period index is used to pull the last 4 reports as the 10-K will be one of the last 4 reports.

A report can also be returned using information from the fact object. This is useful as it allows a

user to search for reports that contain specific information that is not associated with the report

object. It also allows the user to return all the facts associated with a given report.

/api/v1/report/fact/search?report.is-most-current=true&report.sic-

code=3841&concept.local-

name=EntityFilerCategory&fact.value=Smaller%20Reporting%20Company&fields=re

port.entity-name,entity.cik,fact.value

Lastly the following entry point can be used to search on a fact if the report identifier is known:

2
 A Form 10-K is an annual report required by the U.S. Securities and Exchange Commission (SEC), that gives a

comprehensive summary of a company's financial performance.

16 | XBRL Application Programming Interface | June 2019

/api/v1/report/{report.id}/fact/search

Report Fields

The report object has the following attributes that can be returned as fields or used to query the

object:

Fields Search Description

dts

dts.id T The taxonomy identifier used to
produce the report.

entity

entity.cik T The CIK (Central Index Key) of the
entity.

entity.id T Object id of the entity.

entity.ticker T Ticker of the entity.

report

report.accepted-timestamp Acceptance date of the report.

report.id T Object id of the report.

report.accession T Accession identifier associated with
the report if applicable.

report.address Business Address of the reporter.

report.base-taxonomy Taxonomy the report uses.

report.filing-date Filing date of the report

report.document-type T Report type name, i.e. 10-K

report.entity-name T Name of the reporting entity

report.entry-type T

report.entry-url T The url entry point of a discoverable
taxonomy set. This is also referred to
as the entry point for a taxonomy.
This represents the DTS entry point
for a specific report.

17 | XBRL Application Programming Interface | June 2019

report.filing-date The date that the filing was
published.

report.is-most-current T Boolean that indicates if the report
is the latest report.

report.period-end The balance date of the report.

report.period-index T A sequence that indicates the
relative age of the report with 1
being the most recent report.

report.restated-index T A numerical indicator that can be
used to identify if a report has been
restated. If the value is 1 it indicates
that this is the latest report. If the
value is 2 it means that an updated
copy of the report has been filed.

report.restated T Boolean indicator if the report is
restated.

report.sec-url T The unique url at which the report
can be accessed from the internet.

report.sic-code T The industry SIC code associated
with the entity when the report was
filed.

Nesting of Facts

Property values of the fact object are nested when the report object calls the fact object using

the following endpoint:

/api/v1/report/fact/search?

Any properties that are common to both objects such as dts.id are consolidated into the upper

most level to avoid repetition. This happens where properties are shared between two objects,

when they are nested. For example, the following call requests a report and the value of assets

in the report 190220.

/api/v1/report/190220/fact/search?concept.local-name=Assets&fact.has-

dimensions=false&fields=report.document-type,report.filing-

date.sort(DESC),entity.cik,period.year,dts.id,fact.value

This will return a nested json object with the report information encapsulating the fact

information. The dts.id, for example, is part of the fact and report object, but will only appear as

18 | XBRL Application Programming Interface | June 2019

part of the report object. The figure below shows what the return object looks like in a json

format. Note that the fact.id is always returned when a nest fact object is returned.

If the entity object calls the report object the same nesting logic applies.

{

 "report.document-type": "10-Q",

 "report.filing-date": "2017-06-06",

 "entity.cik": "0001090872",

 "dts.id": 256944,

 "fact": {

 "data": [

 {

 "period.year": 2017,

 "fact.value": "8016000000",

 "fact.id": 153589871

 },

 {

 "period.year": 2016,

 "fact.value": "7794000000",

 "fact.id": 153590308

 }

]

 }

}

4.3 Entity Object

Entities can be accessed via three entity object end points. First, an entity can be returned

based on an entity identifier:

/api/v1/entity/{entity.id}

The entity.id is an internal id used by any system and should only be used internally by an

application after the entity id has been determined from another API call.

The second endpoint allows the searching of entities based on the entity objects properties:

/api/v1/entity/report/search

This end point also allows the details of a report associated with the entity to be returned. The

following will give a listing of all the filing dates for all reports made by the entity with the ticker

19 | XBRL Application Programming Interface | June 2019

aray. It will also include all the properties of the entity object. This is because the wildcard “*” is

used on the entity object.

/api/v1/entity/report/search?entity.ticker=aray&fields=entity.*,report.filing-date

The third entry point is similar to the second, except the {entity.id} can be passed as a

parameter to the endpoint:

/entity/{entity.id}/report/search

Entity Fields

The report object has the following attributes that can be returned as fields or used to query the

object:

Fields Search Description

entity

entity.cik T The CIK (Central Index Key) of the
entity.

entity.id T The internal identifier used to
identify an entity. This will be
replaced with the LEI3 when the SEC
supports the LEI standard.

entity.name T The name of the entity reporting.

entity.scheme The scheme of the identifier
associated with a fact, report or DTS.
A fact could have multiple entity
identifiers and this indicates the
identifier that was used.

entity.ticker T Ticker of the entity.

5 Taxonomy (Metadata) Objects

Taxonomy objects are used to represent data that is defined in an XBRL taxonomy or metadata.

The API includes a Concept object, a DTS object, a Label object, a Reference object, a

3
 The Legal Entity Identifier (LEI) is the International ISO standard 17442. LEIs are identification codes that enable

consistent and accurate identification of all legal entities that are parties to financial transactions, including non-
financial institutions.

20 | XBRL Application Programming Interface | June 2019

Reference Parts Object, a Network Object, a Relationship Object, and a Document Object.

Each of these objects is explained below. The following diagram shows the end points to access

data in each of these objects.

5.1 Concept Object

Concepts can be accessed via two concept object end points.

A concept is an object that can be referenced by a concept object identifier.

/api/v1/concept/{concept-id}/search?fields=concept.local-name, concept-

namespace

This will return the concept properties requested using the fields parameter for every dts. For

this reason a dts should always be used in the search parameter.

To search on the properties associated with the concept object, the second search endpoint is

used. The format of the second end point is as follows:

21 | XBRL Application Programming Interface | June 2019

/api/v1/concept/search?

/api/v1/concept/search?concept.local-

name=Assets&dts=1234&fields=concept.local-name, dts.id

This will return the details of the concept Assets in the dts 1234.

All concepts appear in a dts either of a filing or the base taxonomy. To get the details of a

concept, the dts should be provided. If no dts is provided, the API will return every dts a concept

participates in, as this could result in thousands of dts results. For example, each extension

taxonomy is a dts. If no dts is provided, the API will return all the dts’ associated with the

concept.

Concept Fields

The concept object has the following attributes that can be returned as fields:

Fields Search Description

concept

concept.balance-type The balance type of a concept. This
can be either debit, credit or not
defined.

concept.datatype The datatype of the concept such as
monetary or string.

concept.id T A unique identification id of the
concept that can be searched on.
This is a faster way to retrieve the
details of a fact, however it is
namespace specific and will only
search for the use of a concept for a
specific schema.

concept.is-abstract True if the concept is an abstract.

concept.is-monetary True if is monetary.

concept.is-numeric True if is numeric.

concept.local-name T The concept name in the base
schema of a taxonomy excluding the
namespace, such as Assets or

22 | XBRL Application Programming Interface | June 2019

Liabilities. Use this to search across
multiple taxonomies where the local
name is known to be consistent over
time.

concept.namespace T The full namespace of the concept.

concept.period-type The period type of the concept. This
can be either duration or instant.

concept.substitution Substitution group of the concept.

dts

dts.id T The dts id associated with the
concept.

dts.entry-point T The url entry point associated with
the dts of the concept.

dts.hash T Hashed canonical key of the
taxonomy dts.

dts.target-namespace T The target namespace of a
discoverable taxonomy set. (DTS)

Nesting of Labels & References

Return fields from the concept object can also specify properties of the label, references and

parts objects. If the dts is provided then these will be returned as nested children of the concept.

For example the following will return the details of the Assets concepts and its label text.

/api/v1/concept/Assets/search?dts.id=292503&fields=concept.*,label.text

The data that is returned is shown in the figure below:

23 | XBRL Application Programming Interface | June 2019

To get the reference parts associated with the concept as well as the parts, the object can be

added as a return field such as the following:

/api/v1/concept/Assets/search?dts.id=292503&fields=concept.*,label.text,

parts.*

The table below shows the properties that can be returned as fields associated with the concept

object. In fact, these are the properties of the label, reference, and parts objects.

Fields Search Description

labels Returns the label object associated
with the concept.

label.id The id of the label.

24 | XBRL Application Programming Interface | June 2019

label.text Text of a label.

label.lang The language of a label.

label.role T The role of the label.

label.role-short T The end name of the label-role.

reference

reference.id T The identifier of the reference.

reference.role T Role of the reference such as

presentation.

reference.role-definition Definition of the reference role.

reference.role-short Short name of the reference role.

parts

parts.local-name The local name of the part such as

“Publisher”.

parts.namespace The namespace of the part such as

“http://www.xbrl.org/2006/ref”.

parts.order The sequence order of the part.

parts.part-value The value of the part such as “FASB.

reference.id T The reference id associated with the

part.

5.2 Label Object

Labels can be searched via two label object end points.

/api/v1/label/{dts-id}/search?fields=concept.local-name, concept-namespace

This will return all the labels used in a given dts.

To search on specific labels across multiple taxonomies then multiple dts entry points need to

be provided. The format of the using this end point is as follows:

http://www.xbrl.org/2006/ref

25 | XBRL Application Programming Interface | June 2019

/api/v1/label/search?fields=label.*&label.text=Expected return on plan

assets&dts.id=292503,292504

This will return all the labels used for the two dts’s provided where the label matches in all or in

part “Expected return on plan assets” .

Multiple dts id’s can be provided as a comma separated list. The label end point allows

searching on the text used in labels. The text of labels cannot be searched in using the concept

end point. Because so many labels are defined in filings the API does not allow searches across

all XBRL filings and taxonomies as the results can be excessively large.

The table below shows the properties that can be returned as fields associated with the label

object.

Fields Search Description

labels Returns the label object associated
with the concept.

label.id The id of the label.

label.text T Text of a label.

label.lang The language of a label.

label.role T The role of the label.

label.role-short The end name of the label-role.

Concept

concept.id T The id of the concept.

concept.local-name T The local name of the concept

concept.namespace The namespace of the concept

DTS

dts.id T The id of the dts.

dts.entry-point T Entry point of the DTS

26 | XBRL Application Programming Interface | June 2019

5.3 DTS Object

The details of the dts or taxonomy object can be accessed via seven end points.

The first endpoint enables a search for a dts based on the properties associated with the dts

object. The endpoint is as follows:

/api/v1/dts/search

This endpoint can be used to look up the dts details of a taxonomy like the US GAAP taxonomy

as follows:

/api/v1/dts/search?dts.taxonomy-name=US%20GAAP%202017&fields=dts.*

This will return the dts details of the US GAAP 2017 taxonomy.

The second endpoint enables returning the details of concepts associated with the US GAAP

taxonomy based on the properties of the concept object.

/api/v1/dts/{dts.id}/concept/search

The third endpoint can be used to lookup all the concepts or a single concept in a specific

taxonomy by providing the dts id. The following returns the local names of all the elements in

the US GAAP 2017 taxonomy. The id of 292503 is the US GAAP taxonomy.

/api/v1/dts/292503/concept/search?fields=concept.local-name

The following returns the details of Assets from the US GAAP taxonomy and the text label.

/api/v1/dts/292503/concept/search?concept.local-

name=Assets&fields=concept.*,label.text

The following entry point is a variation on the above, but includes the element name in the

endpoint.

/api/v1/d/dts/{dts-id}/concept/{concept.local-name}

A query using this endpoint for Assets would look like the following:

/api/v1/dts/292503/concept/Assets?fields=concept.limit(10).concept.local-

name.sort(ASC),concept.period-

type,concept.substitution,concept.datatype,concept.is-

27 | XBRL Application Programming Interface | June 2019

abstract,concept.id,reference.limit(2),reference.role,parts,parts.*

This fourth endpoint will return all data in the label object for a specific concept in a specific dts.

/api/v1/dts/{dts.id}/concept/{concept.local-name}/label

For example, the following returns the label objects for Assets.

/api/v1/dts/292503/concept/Assets/label?fields=label.*

The resulting data is as follows:

This fifth endpoint will return all data in the reference object for a specific concept in a specific

dts.

/api/v1/dts/{dts.id}/concept/{concept.local-name}/reference

The sixth endpoint is used to return network or graph information. This will return network trees

within a specific dts.

api/v1/dts/{dts.id}/network

The seventh endpoint allows you to define the specific networks that you want returned from a

dts using a search.

api/v1/dts/{dts.id}/network/search

For example to return all the calculation networks and associated relationships, the following api

call can be made.

/api/v1/dts/177604/network/search?network.link-

28 | XBRL Application Programming Interface | June 2019

name=calculationLink&fields=network.arcrole-uri,network.link-

name,network.role-description.sort(ASC),network.role-

uri,network.id,relationship.*

Because the relationship object fields are requested with “relationship.*” field parameter, the

relationships between concepts will also be returned for each calculation network.

DTS Fields

The dts object has the following attributes that can be returned as fields:

Fields Search Description

dts

dts.entity-name The entity name associated with the
dts.

dts.hash T Hashed canonical key of the
taxonomy dts.

dts.id T The dts id associated with the
concept.

dts.entry-point T The url entry point associated with
the dts of the concept.

dts.taxonomy T The broad name of the taxonomy
such as “US GAAP” or “Solar”.

dts.taxonomy-name T Specific name of the taxonomy and
version year such as US GAAP 2012.

dts.version The version number of the
taxonomy.

report.accession T The source report identifier
associated with the report.

report.id T The report identifier that uses a
given taxonomy.

5.4 Network Object

The details of the network object and associated relationships can be accessed via three

endpoints.

29 | XBRL Application Programming Interface | June 2019

The first endpoint enables a search for a network based on the properties associated with the

network object. The endpoint is as follows:

/api/v1/network/relationship/search

This endpoint will always return nested relationships associated with the network. Even if no

relationship attribute is provided, the relationship.id will be returned.

This endpoint is used to return the relationships associated with a given network such as the

following:

/api/v1/network/relationship/search?network.id=27624452&fields=network.link

-name,network.id,relationship,relationship.id.sort(ASC),relationship.*

Because the network.id is specific to a dts, the dts.id does not have to be provided. However the

dts.id can be provided as a search parameter, which would make this similar to the end points

associated with the dts object.

The second endpoint allows you to return the details of a network if you know the network id.

/api/v1//network/{network.id}

This endpoint for example is used as follows to return the details of a specific network.

/api/v1/network/27624452?fields=network.*

If you ask for relationship information when using the above endpoint it will not be returned. To

get relationship information, the third endpoint can be used, which allows you to search on

specific relationships as well.

/api/v1/network/{network.id}/relationship/search

For example this endpoint can be used to search for relationships in a network that have a

certain parent.

/api/v1/network/27624452/relationship/search?relationship.source-

name=BalanceSheetComponentsDisclosureAbstract&fields=network.*,relationship

.*,relationship.limit(4),relationship.tree-sequence.sort(ASC)

30 | XBRL Application Programming Interface | June 2019

Network Fields

The network object has the following attributes that can be returned as fields:

Fields Search Description

dts

dts.entry-point T The entry-point associated with the
dts.

dts.id T The dts id associated with the
concept.

network

network.arcrole-uri T URI that identifies the link types,
such as parent-child. However, this
is the full uri of
http://www.xbrl.org/2003/arcrole/p
arent-child.

network.id T Unique integer identifier used to
identify a specific network. A
different identifier is used for
networks with the same role but
different linkbase types.

network.link-name T Name that identifies the link type.
This corresponds to a linkbase i.e.
presentationLink, calculationLink,
definitionLink.

network.role-description The human readable description of
the network role. In some filing
regimes this is used to order the
networks.

network.role-uri T The URI of the network role. This
would appear as a URI describing the
reporting group i.e.
http://www.bc.com/role/Disclosure
BalanceSheetComponentsDetails.

31 | XBRL Application Programming Interface | June 2019

5.5 Relationship Object

The details of the relationship object can be accessed via two endpoints.

The first endpoint enables a search for a relationship based on the properties associated with

the relationship object. The endpoint is as follows:

/api/v1/relationship/search

This endpoint allows you to return data about the network and the relationships in it. The

following example shows how you can return all the root nodes in the calculation relationships of

a given taxonomy.

/api/v1/relationship/search?dts.id=177604&network.link-

name=calculationLink&relationship.tree-

depth=1&relationship.order=1&fields=relationship.*

By using the tree depth attribute and order attribute, we return all the root nodes in a given

network.

The second endpoint returns the same data as above but returns the resulting data in a nested

tree rather than a flat list of relationships.

/api/v1/relationship/tree/search

In the example below, the API returns a tree representing a balance sheet presentation.

/api/v1/relationship/tree/search?network.id=27624452&fields=relationship.id

,relationship.source-is-abstract,network.id.sort(DESC)

This endpoint will always return some required fields, specifically the relationship.source-name,

relationship.target-name, relationship.tree-depth, and relationship.tree-sequence. These fields

are required to build the hierarchy and are always returned when this endpoint is used.

Relationship Fields

The relationship object has the following attributes that can be returned as fields:

Fields Search Description

32 | XBRL Application Programming Interface | June 2019

dts

dts.id T The dts id associated with the
concept.

network

network.arcrole-uri T URI that identifies the link types,
such as parent-child. However, this
is the full uri of
http://www.xbrl.org/2003/arcrole/p
arent-child.

network.id T Unique integer identifier used to
identify a specific network. A
different identifier is used for
networks with the same role but
different linkbase types.

network.link-name T Name that identifies the link type.
This corresponds to a linkbase i.e.
presentationLink, calculationLink,
definitionLink.

network.role-description The human readable description of
the network role. In some filing
regimes this is used to order the
networks.

network.role-uri T The URI of the network role. This
would appear as a URI describing the
reporting group i.e.
http://www.bc.com/role/Disclosure
BalanceSheetComponentsDetails.

relationship

relationship.id T A unique identifier associated with
the relationship.

relationship.order T The order of the relationships
relative to each other when viewed
as a tree.

relationship.preferred-label T The preferred label attribute value
associated with a relationship.

relationship.source-concept-id T The id of the concept that the
relationship comes from.

33 | XBRL Application Programming Interface | June 2019

relationship.source-is-abstract The abstract indicator (boolean) of
the concept that the relationship
comes from.

relationship.source-name T The name of the concept that the
relationship comes from.

relationship.source-namespace T The namespace of the concept that
the relationship comes from.

relationship.target-concept-id T The id of the concept that the
relationship goes to.

relationship.target-datatype The datatype of the concept that the
relationship goes to.

relationship.target-is-abstract The abstract indicator (boolean) of
the concept that the relationship
goes to.

relationship.target-name T The name of the concept that the
relationship goes to.

relationship.target-namespace T The namespace of the concept that
the relationship goes to.

relationship.tree-depth T When viewed as a tree how many
jumps is the relationship from the
root node.

relationship.tree-sequence T The order in which the relationship
appears in the entire network.

relationship.weight The calculation weight attribute
value associated with a relationship.

34 | XBRL Application Programming Interface | June 2019

6 Assertion Objects

Assertion objects are used to capture the results of data quality rules run against a filing. The

results of assertion objects can be obtained from two different end-points. The first end point

allows a user to pull errors from the XBRL US database. The second api allows a filer to submit

a filing and have the API validate the filing and return the results.

6.1 Retrieving Errors from the XBRL US Database

All XBRL submissions submitted to the SEC are processed using the XBRL validation checks.

This includes edgar filing manual errors, consistency check errors and DQC errors. All of these

errors are recorded and stored in a database that can be accessed using the API. The API

allows a user to search an error based on the following:

1. Error type

2. Time over which errors occurred

3. Filing

4. Company Filing

This endpoint allows a user to access data quality errors from previously submitted filings and

users the end point format:

/api/v1/assertion/search?

In the following example the API is requesting the last 1,000 DQC errors that were filed in

descending order based on report filing date.

/api/v1/assertion/search?fields=assertion.*,report.accepted-

timestamp.sort(DESC),assertion.limit(1000)&assertion.source=DQC

To get the errors for an individual filing the user can submit one of the following search

parameters:

● Report.accession

● report.entry-url

The following shows the API get request to request a filing by the SEC accession number:

/api/v1/assertion/search?report.accession=0001493152-18-

012008&fields=assertion.*

The following shows the API get request to request a filing by the reports uri:

/api/v1/assertion/search?fields=assertion.*&report.entry-

35 | XBRL Application Programming Interface | June 2019

url=http%3A%2F%2Fwww.sec.gov%2FArchives%2Fedgar%2Fdata%2F1651987%2F00014931

5218012008%2Fcfdb-20180630.xml

Assertion Fields

The assertion object has the following attributes that can be returned as fields:

Fields Search Description

assertion

assertion.code T The full error code associated with
the message such as
"DQC.US.0057.7494".

assertion.detail F Detailed rule message describing the
issue.

assertion.rule-focus F The details of where the error
occurred in the filing returned as an
XML string.

assertion.run-date F The date the rule was run against
the filing.

assertion.severity T The severity of the error. Can either
be Error, Warning or Information.

assertion.source T The source rule-set that was used to
generate the error. For example
source=DQC. Possible values are:
1.Arelle:info
2.DQC
3.EFM
4.xbrlus-cc

assertion.type T The identifier of the rule message.
For DQC rules this will be the rule
number.

entity.name T The name of the entity filing.

report.accepted-timestamp F The date that the filing was
accepted into the XBRL US database.

36 | XBRL Application Programming Interface | June 2019

report.accession T The SEC accession ID of the filing

report.base-taxonomy F The name of the taxonomy used for
the filing.

report.creation-software F The creation software used to
prepare the filing

report.document-type T The type of report that was filed
such as “10-K”

report.entry-url T The url for a specific report instance.

report.filing-date F The filing date of the report

report.id T Internal identifier for the report.

report.sec-url T The url at which the details of a filing
can be accessed from the SEC Edgar
system"

report.sic-code T The SIC Code of the report.

6.2 Validating a filing

The API allows a zip file to be submitted that can be validated using the DQC, EFM and XBRL

US rules (Not yet incorporated in the DQC ruleset). The DQC rule-set consists of the approved

checks produced by the Data Quality Committee (DQC) which includes an expanding set of

rules. In addition the API allows the user to run proposed rules that are currently in public

review. When running the proposed rules both the approved and proposed rules are

processed.

To validate a filings POST a multi-part for to the following endpoint:

/api/v1/assertion/validate

With the following name/value pairs:

Name Value Details

Task checkfiling or dqcfiling ● checkfiling - Checks filing against
all rules contained in both XBRL
US, Inc and DQC rule sets.

● dqcfiling - Checks filings against

37 | XBRL Application Programming Interface | June 2019

the DQC rule set

file Contents of the zip file ● The zip file that contains the files
that make up the filing to be
submitted

efm strict or pragmatic
(optional)

● Flag to indicate if efm results
should be returned in strict or
pragmatic mode. If efm is left off
then efm rules will not be run.

Status approved or proposed
(optional, default: approved)

● Allows the user to run either the
approved rules only or the
approved and proposed rules.

format xml or json
(optional, default: json)

● Allows the data to be returned as
either xml or json.

The validate request by default will return the values in an JSON format. However because

many users use the arelle xml format the format can be returned as xml.

The format of the XML returned is shown below:

38 | XBRL Application Programming Interface | June 2019

7 Handling Paging

The API returns information about the number of records returned. In the following example the

user limited the results to 10 records using the limit function defined earlier:

/api/v1/report/search?report.is-most-

current=true&fields=report.*,report.limit(10),report.accepted-

timestamp.sort(DESC)

As part of this query, the API returns paging information that shows the limit of 10, the offset and

the count. The offset indicates the starting point. Note that the offset is set to -1. This means

that the records returned were from the start and an offset was not provided to the API. See

example below.

"paging": {

 "limit": 10,

 "offset": -1,

 "count": 10

},

To get the next 10 records, the API has to define the starting point. This is done using the offset

function. In the previous request we got the first 10 reports sorted by the accepted timestamp.

So the offset for the next request should be set to 10.

/api/v1/report/search?report.is-most-

current=true&fields=report.*,report.limit(10),report.accepted-

timestamp.sort(DESC),report.offset(10)

In the api request the report now has an offset of 10. This will return the following paging

information as well as the data:

"paging": {

 "limit": 10,

 "offset": 10,

 "count": 10

},

It is important when offsetting data, that the data being returned is sorted. This ensures that

records are not duplicated or missed when extracted from the database. This is currently the

only pagination method supported by the API.

39 | XBRL Application Programming Interface | June 2019

8 Error Messages

The API supports a number of error messages for the following situations:

8.1 Invalid Search parameter

If an invalid search parameter is provided the following message is returned.

{"status": "Invalid Parameter",

"body": "The url contains the search parameter network.arcrole-uri. Only the

following search parameters can be used with this url: period.calendar-period,

period.fiscal-period, period.year, period.fiscal-year, period.id,

period.fiscal-id, concept.namespace, concept.local-name, concept.id,

concept.is-base, concept.is-monetary, report.id, report.accession,

report.entry-url, report.restated-index, report.restated, report.sec-url,

report.sic-code, entity.cik, entity.id, fact.id, fact.value, fact.ultimus-

index, fact.ultimus, fact.has-dimensions, fact.is-extended, fact.hash, unit,

dts.id, dts.entry-point, dts.target-namespace, dimensions.id,

dimension.namespace, dimension.local-name, member.local-name."

}

8.2 Invalid Endpoint

If an invalid endpoint is provided, a 404 error is returned.

{"status": "404",

"body": "The requested URL /api/v1/report2/search?report.is-most-

current=true&fields=report.*,report.limit(10),report.accepted-

timestamp.sort(DESC),report.offset(10) was not found."}

8.3 Fields Attribute Missing

The API requires that the fields attribute is provided when returning data from the API.

{"status": "FieldsNotFound",

"body": "Fields parameter required"}

8.4 Invalid Search Value

The values provided as a search parameter must have the correct type. If the type differs from

40 | XBRL Application Programming Interface | June 2019

that expected an exception is returned.

{"status": "Invalid Parameter",

"body": "The value entered for dts.id of 292503a is not a valid

integer. "}

8.5 Invalid Object Name

The object name defined in the return fields must be a valid object name.

{"status": "Fields With Invalid Value",

"body": "Fields parameter using an asterisk must provide aa valid

object name, the object name provided of \"concept2\" is not defined.

A valid object could be fact.*. The object name should match the name

after api version number. i.e. use concept based on :

/api/v1/concept/"}

8.6 Wildcard with no Object Name

A return field using the asterisk wildcard must have an object name. The entry fields=* is invalid

and returns the following message:

{"status": "Fields With Invalid Value",

"body": "Fields parameter using an asterisk must provide an objectname

i.e. fact.*"}

8.7 Invalid Integer on a Limit or Offset Function

The value passed to the limit or offset functions must be an integer. If not the following is

returned.

{"status": "Invalid Limit Parameter",

"body": "The limit parameter must be an integer"}

8.8 Invalid Sort Parameter

The value passed to the sort parameter must be either ASC or DESC in uppercase.

41 | XBRL Application Programming Interface | June 2019

{"status": "Invalid Sort Parameter",

"body": "The sort parameter must be ASC or DESC"}

8.9 Exceeded Limit Amount

The API limits the number of records that can be returned. Each user has a default that applies

to them. If the limit is exceed in the limit function then an exception is reported with the users

actual limit.

{"status": "Invalid Limit Amount",

"body": "The limit property of 2000 must be less than the user limit

amount. Your user limit amount is 1000 records."}

42 | XBRL Application Programming Interface | June 2019

Using the XBRL API

9 Authentication

The XBRL US API and database uses two-legged OAuth2, an authorization framework that

enables applications to obtain limited access to user accounts on an HTTP service, for

authentication. You must have a client id and secret, as well as a username and password,

created at the XBRL US website, to access the API.

To use the XBRL US API and database for your application, you must follow these steps:

1) Authorize the Client: Register yourself and obtain credentials

2) Authenticate: Validate your request and receive a token

3) Make a Request: Use the token when making requests to the API

9.1 Client Authorization

To obtain authorization, go to the XBRL US website (http://xbrl.us/apirequest) and log in. Click

“Create Client”, type in a short name to distinguish between ids and click “Submit” to generate a

client id and client secret. Be sure to save the secret as there’s no way to recover it if lost. You

can have multiple applications access the API by creating a different code for each one. If the

secret is lost, a new id and secret can be created. Be sure to delete the old id.

This page will have a list of the descriptions and client ids.

Authentication

Before using the API, you must generate an authentication token to be used with each request,

by submitting an https POST using the “application/x-www-form-urlencoded” format to the url:

https://api.xbrl.us/oauth2/token.

Requesting a token

To initially receive a token submit the following information to the url above.

grant_type REQUIRED. Value must be “password”

client_id REQUIRED. Value received during client authorization

client_secret REQUIRED. Value received during client authorization

username REQUIRED. User who wants to use the resources

http://xbrl.us/apirequest
https://api.xbrl.us/oauth2/token

43 | XBRL Application Programming Interface | June 2019

password REQUIRED. Users password

platform OPTIONAL. Keyword to distinguish if the user is authenticating from
different applications.

The response will provide the following in JSON format

access_token String used for future requests (Guid, 36B)

token_type Always “bearer”

expires_in Number of seconds before the access_token expires

refresh_token String used to refresh access_token (Guid, 36B)

refresh_token_expire
s_in

Number of seconds before the refresh_token expires

platform Keyword used when token was requested.

Refreshing a token

If the access_token expires, a new one can be requested by submitting the refresh token

received during the initial authentication. The following information should be submitted to the

same url as before:

grant_type REQUIRED. Must be “refresh_token”

client_id REQUIRED. Value received during client authorization

client_secret REQUIRED. Value received during client authorization

refresh_token REQUIRED. Refresh token received during validation

platform OPTIONAL. Keyword to distinguish if the user is authenticating
multiple times

The response matches the same response received during the original authentication.

9.2 Making a Request

When submitting a request to the API, a bearer token must be submitted in the header under

the Authorization key including the access token acquired when it was either requested or

refreshed.

Example:

44 | XBRL Application Programming Interface | June 2019

GET /api/v1/report/190220/fact/search

Host: api.xbrl.us

Authorization: Bearer <token>

The base uri for making requests is: https://api.xbrl.us.

10 Constructing a Request for Information

A request for information is built of two parts. The uri defines what kind of request is being made

and what object(s) is being queried. The query string defines other details of the request. The

basic format is:

Part Format Example

URI /api/v1/<object>/search /api/v1/fact/search

Query <object property>=value&fields=value entity.cik=0001138723&fields=fact.id

https://api.xbrl.us/api/v1

45 | XBRL Application Programming Interface | June 2019

11 Getting Started

Developers interested in accessing the XBRL APIs for application development can get started

using this process:

These steps only need to be done once:

1. Email info@xbrl.us to have your existing XBRL US Web account provisioned for Client

ID/secret generation (register for an XBRL US Web account: https://xbrl.us/register)

2. Generate your Client ID/secret pair for the API by visiting this page:

http://xbrl.us/apirequest and logging in. Scroll towards the bottom of the page and click

on the “Create Client” button, as shown in the diagram below. Save the information you

receive.

3. If you need an environment to test calls, you can download a free client:

a. The appropriate version of the Insomnia REST Client:

https://insomnia.rest/download/

b. Template file

4. After starting Insomnia click on the down arrow button on the right side of the purple

area in the upper left. Chose Import/Export from the drop down menu.

5. Click on Import->from file and chose the file you downloaded in 4b

6. Open the same dropdown menu and chose the workspace you imported. The name will

be “XBRL US API - Template”

7. In the upper left under the purple area click on the arrow next to “No Environment” and

chose “Manage Environments”.

mailto:info@xbrl.us?subject=request%20client%20ID/secret%20provisioning
https://xbrl.us/register
http://xbrl.us/apirequest
https://insomnia.rest/download/
http://files.xbrl.us/documents/XBRL_US_Insomnia_Template.json

46 | XBRL Application Programming Interface | June 2019

8. Click on Base Environment, then in the area on the right fill out using your website

username and password as well as the information you received from the website (step

3): client_id, client_secret, password, username. Click “DONE” in the lower right of the

menu.

The following needs to be done when starting a session or if your token expires:

1. Request a token:

a. In the left menu click on “Authentication API” and chose “Request Token”

underneath it. Click on the Send button.

2. To get started:

a. Click on the “Meta Information”. Select a request you are interested in and click

“Send” to receive the response in the right application window.. This section will

return information that gives information about the API.

b. The “API Test Requests” folders has the example requests that are returned from

the Meta Information requests.

c. Use the “Custom Requests” folder for your own requests. You can use the

example already there or copy an existing request under “API Test Requests”.

47 | XBRL Application Programming Interface | June 2019

12 Google Sheets

To allow easy analysis of data the XBRL US API supports using google sheets. This google

sheets add-on provides some simple functions that allow the XBRL US API to be called from

within Google Sheets.

The addin is available from Google at the following location:

Google Sheets Add-on4

The add-on allows you to pull data into google sheets using the API. It handles the management

of the authentication tokens needed to use the API. It allows you to use your Google account to

authenticate yourself. To use the API the user can be authenticated using the their XBRL US

login or a Google account.

If there’s no XBRL US Membership associated with the email you use for your Google Account,

the API will return 100 records at a time, with a maximum of 1,000 records for the query. See 7.

Handling Paging for details on using ENDPOINT.offset() to return additional available records,

and https://xbrl.us/benefits to join XBRL US and return all records).

You can determine if you are authenticated by using the add-on drop down and choosing the

Authentication menu. A sidebar will show on the right side of the sheet showing your

authentication status. If you are authenticated you will see the following:

If you are not authenticated you will be instructed to login by the add-on.

Once you are logged in you can request data using the API and the showData() function.

4
 https://chrome.google.com/webstore/detail/xbrl-api-access/eldallnkfdneiaeocgjpgnjbeplmmlej

https://xbrl.us/xbrl-api-addon
https://xbrl.us/benefits

48 | XBRL Application Programming Interface | June 2019

12.1 Google Sheet Functions

ShowData

The showData() function uses the following parameters:

url: The url of the api call. Entered as a string.

type : Possible values are (blank, fields, name). Entered as a string. If

blank : performs a string return

fields : returns the structure of the nested fields that will be returned by the API

call

name : used with the fieldname parameter to retrieve specific information for a

given field. Returns as a table

fieldname: The name of the field that should be returned. Entered as a string. Different

levels are separated by a "/"

The results of the showData function are returned as an array in google sheets.

Any of the API calls documented in this document can be called using the show data function.

The show data function removes the pagination data, so that information can be shown cleanly

in google sheets.

Example - Inline XBRL Reports

The following string added to a google sheet will show a list of all the inline XBRL files sorted in

descending order.

=showData("https://api.xbrl.us/api/v1/report/search?report.entry-

type=inline&fields=report.base-taxonomy,report.entity-name,report.filing-

date.sort(DESC),report.accession")

This will return the following array in the google sheet:

49 | XBRL Application Programming Interface | June 2019

Example - Nested Data

Because the API can return data in a nested structure the showData() function also allows the

user to view the structure of the data returned in google sheets. By adding the fields parameter

the query will shows the fields that will be returned by the query. This is entered as a string.

The following url will show the tree structure of the data from the url.

=showData("https://api.xbrl.us/api/v1/concept/Assets/search?dts.id=292503&fields=

concept.*,label.text","fields")

The tree below is returned. Mote that label.text is indented. This means that multiple labels

could be returned.

To get the labels associated with the Assets concept the showData() function can be used again

with the third parameter fieldname. Note, that the second parameter must be changed from

fields to name.

=showData("https://api.xbrl.us/api/v1/concept/Assets/search?dts.id=292503&fields=

concept.*,label.text","name","label")

This will return the details of the label as the following array:

50 | XBRL Application Programming Interface | June 2019

sequence 1 label.text

1 Assets

1 Assets, Total

1

Sum of the carrying amounts as of the balance

sheet date of all assets that are recognized.

Assets are probable future economic benefits

obtained or controlled by an entity as a result of

past transactions or events.

To get all the details of the label label.text is replaced with label.* in the API call:

=showData("https://api.xbrl.us/api/v1/concept/Assets/search?dts.id=292503&fields=

concept.*,label.*","name","label")

This will return all the details of the concept label, shown below:

sequence

1 label.id label.lang label.role

label.role-

short label.text

1 185360489 en-US

http://www.xbrl.org/20

03/role/label label Assets

1 185384395 en-US

http://www.xbrl.org/20

03/role/totalLabel totalLabel Assets, Total

1 185381533 en-US

http://www.xbrl.org/20

03/role/documentatio

n

documentatio

n

Sum of the carrying amounts

as of the balance sheet date

of all assets that are

recognized. Assets are

probable future economic

benefits obtained or

controlled by an entity as a

result of past transactions or

events.

http://www.xbrl.org/2003/role/label
http://www.xbrl.org/2003/role/label
http://www.xbrl.org/2003/role/totalLabel
http://www.xbrl.org/2003/role/totalLabel
http://www.xbrl.org/2003/role/documentation
http://www.xbrl.org/2003/role/documentation
http://www.xbrl.org/2003/role/documentation

51 | XBRL Application Programming Interface | June 2019

If the above query is run without the the type and fieldname attributes of the showData()

function then all the fields are returned. Any nested data is concatenated together in a single

field. The label.text field in this case is returned as the following:

(0 : (label.text : Assets;) 1 : (label.text : Assets, Total;) 2

: (label.text : Sum of the carrying amounts as of the balance sheet date

of all assets that are recognized. Assets are probable future economic

benefits obtained or controlled by an entity as a result of past

transactions or events.;))

	1 Overview
	2 Structure of the API
	2.1 Types
	Factual Data
	Taxonomy Data (Metadata)

	2.2 Object Property Format
	2.3 Nested Objects

	3 Query Parameters
	3.1 Fields
	3.2 Sort
	3.3 Limit
	3.4 Search

	4 Factual Objects
	4.1 Fact Object
	Searching on Taxonomy defined Aspects
	Fact Fields

	4.2 Report Object
	Report Fields
	Nesting of Facts

	4.3 Entity Object
	Entity Fields

	5 Taxonomy (Metadata) Objects
	5.1 Concept Object
	Concept Fields
	Nesting of Labels & References

	5.2 Label Object
	5.3 DTS Object
	DTS Fields

	5.4 Network Object
	Network Fields

	5.5 Relationship Object
	Relationship Fields

	6 Assertion Objects
	6.1 Retrieving Errors from the XBRL US Database
	Assertion Fields

	6.2 Validating a filing

	7 Handling Paging
	8 Error Messages
	8.1 Invalid Search parameter
	8.2 Invalid Endpoint
	8.3 Fields Attribute Missing
	8.4 Invalid Search Value
	8.5 Invalid Object Name
	8.6 Wildcard with no Object Name
	8.7 Invalid Integer on a Limit or Offset Function
	8.8 Invalid Sort Parameter
	8.9 Exceeded Limit Amount

	9 Authentication
	9.1 Client Authorization
	Authentication
	Requesting a token
	Refreshing a token

	9.2 Making a Request

	10 Constructing a Request for Information
	11 Getting Started
	12 Google Sheets
	12.1 Google Sheet Functions
	ShowData
	Example - Inline XBRL Reports
	Example - Nested Data

